™

ZFx86™
System-on-a-Chip
Training Book
Version (.80 Rev A
December 4, 2001

ersion 0.80 Rev A ZFx86 Training Book Page 1

Legal Notice

THIS DOCUMENT AND THE INFORMATION CONTAINED THEREIN IS PROVIDED “AS-IS”
AND WITHOUT A WARRANTY OF ANY KIND. YOU, THE USER, ACCEPT FULL RESPONSI-
BILITY FOR PROPER USE OF THE MATERIAL. ZF MICRO DEVICES, INC. MAKES NO REP-
RESENTATIONS OR WARRANTIES THAT THIS DATA BOOK OR THE INFORMATION
CONTAINED THERE-IN IS ERROR FREE OR THAT THE USE THEREOF WILL NOT
INFRINGE ANY PATENTS, COPYRIGHT OR TRADEMARKS OF THIRD PARTIES. ZF Micro
DEVICES, INC. EXPLICITLY ASSUMES NO LIABILITY FOR ANY DAMAGES WHATSOEVER
RELATING TO ITS USE.

LIFE SUPPORT POLICY

ZF MICRO DEVICES' PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPO-
NENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN
APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF ZF MICRO DEVICES, INC.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical
implant into the body, or (b) support or sustain life, and whose failure to perform when properly
used in accordance with instructions for use provided in the labeling, can be reasonably
expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to per-
form can be reasonably expected to cause the failure of the life support device or system, or to
affect its safety or effectiveness.

(c)2001 ZF Micro Devices, Inc. All rights reserved.

ZFx86, FailSafe FailSafe Boot ROM, Z-tag ZF-Logic, InternetSafe, OEMmodule SCC, ZF Sys-
temCard, ZF FlashDisk-SC, netDisplay, ZF 104Card, ZF SlotCard, and ZF Micro Devices logo
are trademarks of ZF Micro Devices, Inc. Other brands and product names are trademarks of

their respective owners.

Note: Fonts in this book are large in that the book is designed to be used in classroom lecture with an
overhead projector.

Version 0.80 Rev A ZFx86 Training Book Page 2

Table of Contents

(04 =T o =T gl B @ Y YT 7
Finally a real X86 System on a Chipcoooiiiiiiiiiicccceee e 8
Introducing the ZFX86oooiiii e 9
ZFx86 - The Integrating Platform ... 10
ZFX80 FRAUIES ... 11
The Chip and the Data BOOKoooviiiiiiiiiiii e 12
The BIOCK Diagram ..o s 13
Block Diagram: ZFx86 Vs. RISC ... 14
Pentium vs 486 Core CPU TechnOolOogyccooviiiiiiiiiiiiiieee e 15
The ZFx86 Integrated Development Systemcccceeeviiiiiiiii 16
ZFx86 “toy” Board Demonstration Designciiiiiiiiiiiiiiiieeeeee e 19
Tri-M Systems MZ104 PC/104 ZFXx86 BOardccccvviiiiiiiiiiiiiiiaeeeeeeeeeeeeeeeeene 21
ZFX86 DOCUMENTAtIONccoeiiiiieee e 26
e-Commerce Server / Companion Chipcccccuuuiiiiiiiiiiiieieeee e 27
Chapter 2 - X86 ProCesSOorccccccciiiimmmmeniisrinreesssssssrsssssssssssssnssssssssnnns 28
ZFX86 BIOCK DIagramuuuiiiiiiiiiii ettt 29
Selling The ZFx86 x86 32-Bit CPUcooiiieeeeee e 30
Chip BENEFitS OVEIVIEWveeiiiiiiiee e s 31
Power Managementi i 32
Memory Address Space — SDRAM ..o 33
Memory Address Space — ISA, PCI, ZF-l0giCcccceoiiiiiiiiiiiiiiieieeeeeene 34
Interrupts and the RTOS ... 35
Task State Transitions in VXWOorks RTOS ... 36
8259A PIC INTEITUPLS .o es 37
NMI, SMIEand SCl e ee e 38
Interrupt Vector ASSIGNMENToooviiiiiiii e 39
Real MOdE (DOS) ...ttt e e e e e e e e e e e e e e e 40
Extended and Expanded Memory in Real Modeccccooiiiiiiiiiiiiiiicii, 41
Basic Protected Mode Operation ... 42
Privilege Levels — Data ACCESScccuuviiiiiiiiiiiiiiiiee e 43
Privilege Levels — Code ACCESSccooeeiiiieieiiieeeeeeeee et 44
MMU — Page Directory and Page Tablescccooiiiiiiiiiiiieeeeeeee 46
MMU — Translation Look-Aside Buffer ... 47
IOPL and SMM ProteCtionoooiiiiiiiiiiiiiiii et 48
(@ o T O T o Tl Iy = o1 1 49
Integrated FPU ... 50
Chapter 3 - North Bridge ... s 53
WA o< T =] (o Te3 [q I 1 = o | =1 o 54
North Bridge FEatUresooooeiiiiiiiiiie e 55
North Bridge Features Q&A ... 56
North Bridge OVEIVIEWoooiiii e 58
North Bridge SDRAM Controlleroooiiiiiiiiiccice e 59
North Bridge PCI ... 61

Version 0.80 Rev A ZFx86 Training Book Page 3

Table of Contents

North Bridge Cache Managementooooimiiiiiiiiiii e, 62

Bus Arbirtration on the PCl BUScciiiiiiiii e 63
PCIvS. ISA DUS MASteringcooiiiiiiiiie e 64
The Role of the NB in Power Managementccccuviiiiiiiiiiieiiiieeeeeeeeecee, 65
ANSWErS 10 QUESTIONS ..o e e 66
Chapter 4 - South Bridge ... e e 68
ZFX86 BIOCK DI@Qrameeeeeiiiiiiiiiieaee ettt 69
Definition of Functional BIOCKS ..o, 70

BUS COMPAIISON ...t e e e e e s 71
Front Side Vs Back Side PCl ... 72

Bus Mastering IDE Controller ... 73
USB.ORG WEDSILE ..o 74

R TU] 1= 1L S 75
Seral POIt e 76
Infrared Communication POrt ... 77
Parallel POrt oo e e e e nnaanaas 78
System Wake Up CONtrol ... 79
ACCESS (I2C) BUS ...t 80
Real TIMe CIOCK ... e e e e e e e e e e e eeeeenannnnns 81
Real Time ClIOCK AlarmSeiiiiei e e 82

(03 T=T o (=T g TR et I o T 1 o 83
ZFX86 BIOCK DIagramuuuiiiiiiiiiie e 84
ZF-LogiC BIOCK DIagramcooooiiiiiiii et e e e 85
ZF-Logic Register Space Access (8-Bit) ..o 86
ZF-Logic Register Space Access (16, 32-Bit)cccoovvrrmeiiiiiiiiieeeeeee 87
ZF-LOQIC REQGISIEIS ... 88

ISA Memory Windows for Flash / SRAM ... 91
Benefits of Memory Window Mappingoooeviviiiiiiiiieieee e 92
Safety Aspects of Memory WIiNdOWSuuvuiiiiiiiiiiiieeeeeeeeeeee e 93
Memory WINdow RegISIErSuuiiiiiiiiiiiiiiiieeeeee e 94
ZF-Logic Memory Windows Review QUEeStIONScccuveeiiieiiiiiiiieieineeeann 95

(€T O3S V(@ 1V =T o o= PP 96
GPCS (I/0 Mapper) Register Set ... 97
GPCS (I/0 Mapper) Control RegiStersuuuueiiiiiiiiiiiiieieieiieeieciee 98

L TATZ= 10 e [Yo TR I 0 = PP 99
ZF-Logic Registers for the Watchdog Timer ... 100
External Control of Watchdog Timeoutooooiiiiiiiiieee, 103

A A CT=T g T=T = | (o) SRR 104
PWM Generator - I/O Control Register ... 106
Boot Parameters RegiSter ... 107
Boot Parameters and CIOCKINGoiiiiiiiii i 111
ANSWErS TO QUESTIONS ..o e e e e e e e e e e e e eeeeaeenens 117

Version 0.80 Rev A ZFx86 Training Book Page 4

Table of Contents

Chapter 6 - Z-tag and BUR ... 121
ZFX86 BIOCK DIagramuuuiiiiiiiiiiii et 122
Using The Z-Tag Manager ...t aeees 123
The Z-tag DONGIE ... e 124

The Ztag Dongle (Continued)ooovmiiiiiiiiiiiee e 125
Normal vs. PassThrough Download Modeccoovviiiiiiiiiiiiiiee e 126
The Z-tag Manager INterface ... 127
Z-tag Manager Commandsoooviiiiiiiiiiieeee e 128
Z-tag “Memory” Dongle Programmingcccouuiiiiieiiiiiiin e eeeeeeiinenn 129
Z-Tag “PassThrough” Dongle Programmingccccooiiimiiiiiiiiiieiiieeeeeenn. 130
Put the BIOS in Dongle - First Get Flash Programcccceviiiiiiinnnnnn. 131
Editing Command 01 - Upload & Execute Codecccccieiiiiiiiieeiienennen, 132
Edit Selection of Flash Code, Add BIOS Basketccccoeeeeiiiiiiiiiiiiiinenins 133
Add The Stop Command, Create A “Save” Foldercccoceveeeieeeeiiiennenn.n. 134
Copy and Paste Commands to WOrk Areacccceeeeeeeeeeeeeeeiiiiiiieeeieeiiinns 135
Copy Program Through the PassThrough Donglecccooiiiiiiiiiiinnnees 136
Test by Reading Back from the “Memory” Dongleoovviviiiiieeiieennnnn.n. 137
BUR Version Test Program Source Codeooovmiiiiiiiiiiiiiiiiieee e, 138
BUR (Fail-safe) Boot Up ROMuuiiiiiiiiiiiiiiiee e 139
Basic Component Initializationccccooiiiice e 140
Elementary debugger console functionalityccccceeeeeiiiiiiiiiiiiiii, 141
Data Fetch and EXECULEooveeeeiiiiiieee e 142
Basic OS functionality for user code ... 143
Manufacturing and Field TOOISuiiiiiiiiiiiii e 144
BUR: DebUG 1001 ... 145
Fail-safe System ... 146

Version 0.80 Rev A ZFx86 Training Book Page 5

Table of Contents

Version 0.80 Rev A ZFx86 Training Book Page 6

ZFx86 Training Book

Chapter 1 - Overview

NOTE References compatible with ZFx86 Developers Data Book version 0.80.

Overview ZFx86 Training Page 7

12/4/01

Finally a real X86 System on a Chip

Inside the ZFx86" Chip

N\

—

. -

¢ b

||I. ;||I T

L | ot L]
SR TR R

i L
]

iy

Ll

1
| |
el e e . — e ey E— S e e e —

9

8 P B SN | S N O SRS N T g S S I g S B S O e SN

lll |:I r'. ! l'- l'l \ |I I" |:I|: I

32-BIT X86 — 2 USB DEVICES
PROCESSOR —{ 4 EIDE DEVICES
FPU, 8K g
L1 WB CACHE - FLOPPY DISK
5 PARALLEL PORT
¥ 25E P
4-256 MB SORAM MORTH = m:;n ia
SELECTABLE 16/32 BITBUS | BRIDGE g AT KEVBOARD
—_— P52 MOUSE
'—-r REAL-TIME CLOCK
A FCBUS
o X-BUS
-‘Z:f FULL PCI BUS ;;:E P B GPID
" DMA
ZF FAILSAFE
BOOT ROM [T ZF-LOGIC
(12K BYTE BOOT Z-TAG INTERFACE
UPDATE ROM) EXTERNAL MEMORY
| &1/0 DECODE LOGIC
WATCHDOG TIMER
_ SCRATCH REGISTERS
B~ . \ 2 !| PWMGENERATOR

R

N

* Processor: 486+ CPU at 128 MHz

* North Bridge: DRAM Controller and FrontSide 64 MHz PCI Bus

+ South Bridge: Generates BackSide PCI and ISA Buses.

« USB + Extended IDE Device Interface: on the FrontSide PCIl Bus

- SuperlO: Industry Standard X86 1/O + I1°C
+ ZF-Logic: ZF Additions for Embedded Systems, Low BOM cost, and

FailSafe

Overview

ZFx86 Training Page 8

l||' |". I'.l' TR T Y YN YN

1 L 1 i
y ¥ Y VN

\

\

I'|II

Introducing the ZFx86

MICRO DEVICES

ZFx86

4 100-0200-02
1'234567EF012

©@1999 FailSale

Phcenix -

fechnologies

Introducing the
“FailSafe ZFx86” for the next
generation of embedded systems

Unequaled set of traditional PC H/W features

Lowest BOM cost in market for lowest OEM product cost
System level architecture to minimize integration complexity
ZF H/W features unique to embedded market

Bundled S/W & Firmware completes PC "system"
Mainstream .24 micron technology

“Proven” industry standard architecture

World class silicon partner

Overview ZFx86 Training Page 9

10

ZFx86 - The Integrating Platform

Zy

System
ﬂ Architecture == WindRver
VaWorks RTOS
w/iBrowser & Java Support

ph%’iﬁ

Valfonal demicondwoiar

Core Libraries

Pentium Class Peripherals
[Morth/South Bridge), Foundry

T i PC Compatible BIOS
32-bit x86 CPU Core
Q Microsoft
Linux 0/% Windows 3x, 9x, CE
Compatible

H;I‘I.IE;CUEII' Crash Immune H?:;ﬂ
Linux-based development EFI@
environment hosted on ‘ P
Red Hat Linux = redhat Linux

Overview ZFx86 Training Page 10

ZFx86 Features

11

1.
2.

® N O O

©

Overview

5 Watts @ 100MHz Typical

License free BIOS supporting Windows 9X, CE, DOS,
NT/E, Linux

Cyrix 586 FP DX 32 bit core with Pentium class North/
South Bridge

Dedicated PCI & ISA Bus - no multiplexing, supports
legacy ISA code

USB fully supported

SDRAM fully supported

Selectable 16/32 bit DRAM Bus reduces memory bloat
Patented FailSafe™ system for crash immune opera-
tion

Fully PC compatible; runs all x86 code NATIVELY

Robust Integrated Development Platform S/W
Installed - DOS, Linux, RTOS, Full BIOS Included

ZFx86 Training Page 11

12

The Chip and the Data Book

The first thing to remember is that if someone asks you
“is it inside the chip?”, the answer is “Yes”.

There is so much inside this chip that you'll be hard
pressed to find something that is not there.”

The second thing you have to remember is that your
best friend is the data book. The data book is over
600 pages long, and covers in detail almost everything
were going to talk about. Most of the stuff in this train-
ing book is just right out of the data book. If you have a
guestion, go to the data book, it's there.

1. A Pentium Processor and an Ethernet Controller and a Video Controller have been left out of the chip. The
Pentium would have made the entire chip far too complex and expensive -- our enhanced 486/133 with ISA
and ISA and Super /O (etc) provides lots of functionality and performance.

An Ethernet Controller and Video Controller would have again driven the price and complexity far too high.
However, ZF plans a companion chip to add the Ethernet and Video. See ‘e-Commerce Server / Companion
Chip’ on page 27.

Overview ZFx86 Training Page 12

13

The Block Diagram

The first reference point is the block diagram. That's what
the chip is all about.

The first thing we're going to talk about is the processor
core. We will step through what is in there. The processor
core talks to what we call the North Bridge.

Then we will talk about what is in the North Bridge. What
things the North Bridge does, how it tries to keep track of
who's talking to whom. The North Bridge talks to the rest of
the system through a Front Side PCI bus. This is an inter-
nal bus; none of these pins come out to the outside world. |
think it interesting and important to note that this is the way it
is structured inside, because some of the devices are actu-
ally right on the internal bus. To the outside world, you have a
Back Side PCI bus.

Talking to the South Bridge through the ISA bus is the
Super /0. These are traditional PC things, things that we
are used to seeing everywhere.

Everything below the Super /O is functionality that we
have added to the chip that is beyond the normal PC archi-
tecture. We call this the ZF Logic, the BUR, and the Z-tag.
These are things that we find interesting to the embedded
designers, things that people need to put together their sys-
tems with less cost and less pain then normally is associated
with designing a CPU into an embedded device.

Overview ZFx86 Training Page 13

14

Block Diagram: ZFx86 Vs. RISC

Interrupt
Pl Controller .
Timers
JTAG . .
> pon 4—_: RISC Execution Unit
Memory Management
4—»| Trace Port 4—‘ Unit
Instruction Data
<> Serial Port Cache Unit | Cache Unit
L1
4-Channel [
P DA Controller On-chip
Peripheral
¢ Bus
Bus Interface Unit
DRAM Controller 1/O Controller

v

v

v

RISC Peripheral Integration Den-
sity is much lower than ZFx86

Time-to-Market: x86 is always first
platform supported due to Wintel
dominance

Legacy x86 HW Base will be difficult
for RISC to overtake (Ethernet,
Modems, Graphics Controllers,
HomePNA, etc.)

Integrated RISC Designs require cus-
tom or semi-custom chip develop-
ment and huge $ investment in
design tools.

Expensive and time consuming: Only
available to major corporations RISC
Firmware, O/S and Application
development is longer & requires
unique expertise

Data Address DRAM SRAM, ROM, I/0
Bus Bus Controls Controls
r________________________.
MachZ - [
X . 1 32-bit x86 .
Plz:agr?:fghip I oy 2 USB Devices _=_p
e Din 1 Core .

Block Diagram | WIFPU & _ 4 IDE Devices _=—p

1 8K L1cache | [|
1 @ Floppy Disk —_—

©

| ‘@ Parallel Port —_—l

SDRAM b= |
2 2 Serial Ports _=—>
AT Keyboard _=_.
PS2 Mouse —l—bl
Backside Real-Time Clk _=_.

PCI .

H I Cbus _=_.
1 M | scpPio —_t

1 S |

1) @ - I

1 ZF FailSafe g ZF-Logic "
: Boot ROM = Z-tag Interface —t—

External Memeory I

: (12K Byte BIOS Decode Logic II

Update ROM) External I/O

: Decode Logic —
1 Dual Watchdog Timer :—P
: PWM Generator —=—p

I 1

I [

Overview ZFx86 Training Page 14

Pentium vs 486 Core CPU Technology

Table 1: Increasing Power - More and More Devices/Chip

CPU Transistors Layers | Width | Slze
8080 3,000
8085 6,500
8086/8088 29,000
80286 60,000
80386 275,000 10 1um | 257
80486 1,200,000 12 .8um | 357
Pentium 3,100,000 18 .6um | 506
CPU Transistors Layers Width
ZFx86 486+ 2,500,000 20+ .24um
ZFx86 Pentium? 4,500,000

a. There is no ZFx86 Pentium. The point of the diagram is to show that the “sweet spot” in per-
formance Vs. transistors is the 486+.

Overview ZFx86 Training Page 15

16

The ZFx86 Integrated Development System

ZFx86 32bit CPU CD ROM disk drive

10/100Base-T Ethernet OS software and utilities
VGA/XGA/SVGA/SXGA preloaded

CRT controller

Two serial port connections, one Lynx Real-Time Systems, Inc.
selectable as IrDA Blue Cat Linux

One parallel port connection Full Red Hat

Three PCI expansion slots Linux 6.X distribution

Two ISA expansion bus slots Phoenix BIOS

Two USB ports Caldera DR-DOS

PS/2 keyboard and mouse Wind River VxWorks RTOS
Floppy disk drive

IDE (ATA-4) disk drive

Overview ZFx86 Training Page 16

17

The ZFx86 Integrated Development System

The ZF ZFx86 Integrated Development System is a network-ready and video-ready, full-function ATX size
evaluation system. The system features ZF's system-on-a-chip, ZFx86, with 10/100Base-T Ethernet (PCI)
card and a display controller (PCI) to create an evaluation environment that allows the OEM designer to
test the ZFx86 processor with proprietary hardware and software.

Complete Feature Set

The ZF ZFx86 Integrated Development System incorporates all the functionality of a standard PC
motherboard with a number of enhancements and added features. The board includes serial and parallel
connectors, floppy disk header and IDE connectors, user-available flash, external JEDEC byte-wide
socket, ISA and PCI expansion bus connectors, and a PC-compatible BIOS. Our patent pending
FailSafe™ Boot ROM allows the user to easily reboot the system if the BIOS is corrupted, or if the CMOS is
inadvertently configured in a manner which locks the system in an unusable mode. The user can then simply
reprogram the FLASH to recover the system. In addition an ATX power supply, a hard drive (preloaded
with an RTOS and Linux OS), a floppy drive, a CD, a keyboard, mouse, and cables are all included to
facilitate the engineer's bring-up task.

Quicker design cycle, shorter time-to-market

Easily integrate the widest selection of embedded hardware peripherals by attaching ISA or PCI expansion
cards directly to the board via the sockets provided. The PC/AT ROM-BIOS and OS enable you to develop
software on your desktop PC and then easily transfer your development work to the embedded system with
little or no modification. Or you can develop your application software directly on the ZF ZFx86 Integrated
Development System.

Overview ZFx86 Training Page 17

The ZFx86 Integrated Development System

18

-
|
=

1
5 md

TI1iE
EHE oy . = i
| e g - - i
- SETTHIEHSIHNEE g o

Do el LA
e e T e R TR e R R LT AT e i T e o]
R L L

||||||||||||||||||||||||||||||| inim i dpididiie

T e L T S L T L E AL
B e e e e
LR T T e T L L L LR T L]

Overview ZFx86 Training Page 18

19

ZFx86 “toy” Board Demonstration Design

9J2248

10JC0002

-

Overview

?9&

H_mmmuﬂww

ZFx86 Training Page 19

0 DRAM O FLASH
BUR Demo

Demo Programs
are transferred to
an on-board
SEEPROM using
the Z-tag man-
ager software.

On power up, the
program is read
into the ZFx86 on
Chip RAM by the
BUR.

8MB DRAM
16 MB Flash
pocket PC

1Mbit on board
SEEPROM can
be used as anon

board Dongle.

On power up, the
program is exe-
cuted out of 16
MB FLASH with

8MB External
DRAM.

20

Toy Board Continued

Toy Board with ZFx86 System on a Chip

« on-chip keyboard/mouse controller
« on-chip SDRAM Controller
« on-chip Flash Chip Select (Memory Mapper)
1 Mbit SEEPROM 16 MB Flash
® l0=r""|'\:PR°G _o_§. B .—+ B .+ u,
= I C H g E;I‘
; Ls1|—|||||:|.u;" s 2 m m.2 .Ig:,mE °
gl e e R e AEe YT e
E:DZ gpi; mmlRE @ — WmRso
AKH:: I eem | =—EK
L, ®|=e ¢ = — EE33
= i ’ (=5
—-r_m § REP_E EJE .
Tﬂz s a_ . E FB‘.
gl 1 80
™ szl oo
|-—.| RPY__ @ — CORE PWR_".-+. .CE g[:]l c‘z ::_.:RT.
Overview ZFx86 Training Page 20

21

Tri-M Systems MZ104 PC/104 ZFx86 Board

m.z.'iiiglbiiﬂiiL

By

™
- www.zfembedded.com
y MachZ Pc:"
3100-0200-00 E:
T ORI

umor |
1012 “gyecri 3
0566 £7° L “;"".
1 ([}
£

© 1999 Phoenix Technologies

vy M-S stemS‘lnzm -D@4-V1.85
IF hDy plonesrs §/N: 74780728

The MZ104 board is fully compliant to the PC/104 specification. Using

the ZFx86 on a 6 layer circuit board. The MZ104 brings out most of this

chips’ internal features, and supports a 2 or 4 Megabyte Flash ROM, the
M-Systems DiskOnChip, and a 144 pin SO_DIMM connector supporting
either 32 or 64Mb of fast SDRAM. The MZ104 is the first and least com-

plex member of a family of three PC/104 boards designed around the
ZFx86.

See www.controlled.com/pc 104/consp5.html). This means that it is part of a fam-
ily of about 5000 boards produced by about 160 suppliers (see pc104.org).

Overview ZFx86 Training Page 21

www.controlled.com/pc 104/consp5.html
pc104.org

22

PC/104 Module Stack

PC104 modules will stack together connecting the bus from one card to
the next. In this case, the top card is a relay board showing the somewhat
industrial history of the PC/104 modules.

In the middle of the stack we have a CPU card, and on the bottom there
is a UPS battery board.

The PC/104 connectors themselves use long pins and deep sockets
which provide a very reliable electrical interconnect and which act as a
spine to strengthen the stack. Nylon or metal spacers are used on the
corners adding strength and rigidity to the stack. Compare this to stan-
dard ISA cards, which are prone to intermittent electrical connections --
especially when in motion!

Overview ZFx86 Training Page 22

23

PC/104 Enclosure

Pictured here is an aluminum enclosure with rubber shock absorbing
mounts designed specifically for hostile environments.

Enclosures for PC/104 are basically there to protect the electronics from
the environment. They are also designed to shed as much heat as possi-
ble to keep the internal electronics cool. Good designs also include con-
sideration of vibration and G-force minimization to protect the PC/104
stack when mounted in high vibration or G-force locations.

Marketing people like the idea of selling a black box solution whose price

is justified by its function rather than its component costs.These high
stamina enclosures provide added protection and thus added value.

Overview ZFx86 Training Page 23

24

Three Slot 16-Bit ISA Bus Passive Backplane

This picture shows a MZ104 plugged into a three slot standard 16-bit ISA bus
passive backplane. Backplanes of this type are available from various manu-
facturers.

Backplanes such as this allow you combine ISA cards and PC/104 cards dur-
ing prototyping and testing. Although only the MZ104 card is shown in the fig-
ure, a complete PC/104 stack could be connected to up to three ISA cards
using this backplane.

The backplane allows for easy testing of compatibility of features and functions
in chip sets under consideration for design into your embedded solution.

When would you use a passive backplane? If, for example, you had five differ-
ent frame grabber chip sets, you could purchase ISA cards which use these
chips and then test and implement your software without having to build cus-
tom boards of your own using each of the chips under consideration.

Overview ZFx86 Training Page 24

25

Development Backplane Board

The Tri-M DEV 104 Development Backplane Board allows not only for
the connection of PC/104 and ISA cards, but provides hardware prototyp-
ing areas for both thru-hole and surface mount electronic components.
This is very useful for solution providers who require the development of
custom boards based on a hardware prototype. In addition to the PC/104
header that the MZ104 is mounted on, there are three additional PC/104
connectors, one of which has male pins facing upwards which allows
testing of components on the back side of a PC/104 card. This is much
easier than testing in a stack!

Overview ZFx86 Training Page 25

26

ZFx86 Documentati

on

Filename

Description

ZFx86 Data Book.pdf

Complete Data Book.

ZFx86 Training Book.pdf

Contains many details of the unique fea-
tures of the ZFx86 device, including the
Dongle. This book.

System Quick Start Guide.pdf

ZFx86 Integrated Development | Top Level User Guide for the ZFx86 Inte-

grated Development System

Schematic.PDF

Annotated Evaluation 1 Board |Development System board schematic

with comments to clarify different aspects
of the board.

Note: These documents are provided on a CD which accompanies
the ZFx86 Integrated Development System.

Overview

ZFx86 Training Page 26

27| e-Commerce Server / Companion Chip

RJ11
in

out

Corp.
Networ

SDRAM

Graphics
Controller

Encryption

Ethernet
Controller

Firewall

Ethernet
Controller

Mach@

Companion
Chip

ISA Bus

16/32-bit Selectable SDRAM BUS

Z-Tag
Digital
o

’

CPU

MachZ"

External Memory FailSafe
Decode Logic System-on-a-Chip

GPCS Mapper

ZF
2 USB Devices 3 IDE Devices Mouse

| Cbus

Parallel Port

AT Keyboard

Real-Time Clk

PWMgen. 8 GPIO 2 Serial Ports Floppy wDT

System
Flash
(BIOS/ OS/
Application)

Smart
Card
Reader

ZF is investigating chip sets which would increase the value
of the ZFx86.

A possible companion chip with Graphics and Ethernet ++

might provide a 2-chip solution for 150% of the cost.

Overview

ZFx86 Training Page 27

28

ZFx86 Training Book

Chapter 2 - x86 Processor

X86 CPU ZFx86 Training Page 28

12/4/01

29

ZFx86 Block Diagram

Chip

Interface

32-Bit X86 Processor Core

FPU
8K L1 Cache

Backside South 2 USB Deviceg
PC = Bridge 4 IDE Devices
| 8 GPIO
I - —
| Super I/0O
| Floppy Disk PS/2 Mouse
Z-tag Z-tag :
- Parallel Port Real-Time Clk
Interface : Controller 5 Serial Ports 2C Bus
JTAG - Test Mode AT Keyboard
B&%ndt;?'lypéncdan
ISA Bus ?
[
[
| ZF-Logic
! ZF-Logic Register Set
: ZF Fail-Safe Programmable Z-tag interface
| Boot ROM Programmable PWM Generator
[ISA Memory Mapper for Flash/SRAM
| 12K Boot ISA 1/0 Mapper
Up ROM .
ZFX86 I (BUR) Bootstrap Control Register
Fail-Safe | Dual Watchdog Timer
PC-on-a-Chip : User/BIOS Scratch Registers
Block Diagram |
L — e e e e e e e e — — —_——— -

X86 CPU

i

~

North
Bridge

‘ Frontside PCI

ZFx86 Training Page 29

30

Selling The ZFx86 x86 32-Bit CPU

The CPU: a lot of these things that you see
here are X86 and PC buzzwords that you have
seen before. Itis in the manual and it is in the
chip.

We will not always be compared to another x86
processor.

When you go out into the field you'll find there
are two groups of people: those people who
have decided to x86 is theirs forever, they love
it and they want it, and they are going to ask

you one set of questions.

Then there's going to be a set of people who
say "l have decided to go with a RISC proces-
sor",. Or "what this Transmeta thing all about":

what is the Caruso’ chip all about? We are
going to go into that later.

1. See ‘Why Not Crusoe’ on page 52.

X86 CPU ZFx86 Training Page 30

31

Chip Benefits Overview

A lot of the stuff that we point out here shows this chip has got it, and
it's a particular attribute of the x86 architecture. Essentially we're picking
up 20 years of legacy. All the best minds in the valley: Intel, AMD, big
companies, have been working on this architecture for the past 20 years.
We just inherited from a "rich Uncle", and that's what we're bringing to
you.

Power management is a hot button everywhere. We will talk about how
power management works through the chip; power management has to
span the entire chip, from the top to the bottom.

We challenge Transmeta to have all the addresses spaces that we
have.

Interrupts can be tricky, especially when you put PCIl onboard.

Write-thru vs. write back cache is explained in the manual very clearly.
Everyone knows that L1 cache is very tightly coupled memory. It is
inside the chip. It is expensive to put in so not everybody does it.

The on-chip cache is 8-K bytes. And it has both modes of write-thru and
write back. The write back cache really helps speed up burst writes

to the DRAM.2

System Management Mode is a totally separate address space entered
via SMI that allows you to use the chip without any of the applications or
the operating system having to know what's happening down below. ltis
a really powerful feature those people we need to really get deeply into
the chip.

1. The ZFx86 has separate /0 and Memory address spaces, and the ZFx86 has both an ISA and PCI exter-
nal bus

2. The other benefit of write back cache is that it frees up bus time for other operations, delaying writes until
they are necessary.

X86 CPU ZFx86 Training Page 31

32

Power Management

Power management goes through the entire chip.
How does it get to the processor? There are two pins,

SUSP#! and SUSPA# that go into the processor.

Those pins do not go off chip, so why do we mention
them? Those pins have to be activated through the
software from the South Bridge through the North
Bridge to the processor. There's a handshaking pro-
cess that takes place that brings the signals back down
all the way to the South Bridge before the chip actually
shuts down. It takes about 200 clock cycles. That's
not that long.

ZF will provide APM 1.2 power management sup-
port through the Phoenix BIOS (see Interrupt 15h—
APM Services in PhoenixBIOS 4.0 Rev6 User Man-
ual.PDF).

ZF will also provide APM support as part of the ZF
Board (Chip) Support Package for the VxWorks RTOS.

1. See file ZFx86 Power.PDF for power consumption.

X86 CPU ZFx86 Training Page 32

Memory Address Space — SDRAM

33

In the memory space the CPU allows 4 GB of logical
address space, but the chip is physically limited to

256 MB of SDRAM. Intel chips map logical to phys-
ical memory space using the built in MMU.

Intel architecture provides a protected mode fea-
ture to allow software to be written to provide task
isolation. Wind River (Tornado 3) and QNX embed-
ded RTOS software will take advantage of this pro-
tected mode.

Intel processors have 64 KB of address space for
Input/Output which is outside of the memory
address space. Thus there is no conflict between

the I/O Space and the DRAM spac;e.2

1. You can also have PCI memory space and ISA memory space. Using the ZF-logic Memory Chip Select
feature, you can add up to 64K of flash/SRAM memory which is viewed through ISA memory viewports (allow-
ing a lot of memory to be viewed through a small ISA memory hole).

2. There are four benefits of having memory and 1/O space isolated: (1) the /0O does not create holes in the
DRAM space; (2) in protected mode, using the IOPL bits in the CPU, access to 1/0 can be restricted to pro-
cesses of high enough privilige; (3) using the 1/0 BITMAP in the Task State Segment, specific /0 addresses
may be made available to any task; and (4) in a sophisticated O/S like IBM OS/2, DOS sessions can claim 1/O
ports using the I/O bitmap. Items 2-4 are features of the protected mode operation of the Intel architecture.

X86 CPU ZFx86 Training Page 33

34

Memory Address Space — ISA, PCI, ZF-logic

The 256 MB refers to SDRAM but does not refer
to memory on the ISA bus or the PCI bus.

ISA memory can be expanded with minimum cost
using the “extended digital logic”, the ZF-Iogic.1

1. See ‘Benefits of Memory Window Mapping’ on page 92

X86 CPU ZFx86 Training Page 34

35

Interrupts and the RTOS

Interrupts are one of the key elements which allows
the processor to manage different tasks at the same
time.

Interrupts: this is a good time to talk about the real-time
operating systems because the real-time operating
systems have a very small time delay (called latency)
for processing interrupts.

What they do is that they quickly grab control of the
processor, take care of the I/O which needs to be taken
care of, and then go back to normal program execu-
tion.

In a RTOS such as VxWorks, tasks can be placed on
the ready-list based on time tick interrupts, or based
on interrupt.

The difference between an RTOS and a normal
operating system is the normal operating system
really doesn't have this built-in mechanism to define
which tasks are really important, and queue them
based on real time events.

X86 CPU ZFx86 Training Page 35

36

Task State Transitions in VxWorks RTOS

VxWorks 5.4
Programmer’s Guide

Figure 2-1 Task State Transitions

The highest-priority ready task is executing.

-@- delayed

suspended

taskInit()
ready ——p pended semTake() / msgQReceive()
ready ——p delayed taskDelay()
ready — p suspended taskSuspend()
pended — p ready semGive() / msgQSend()
pended — p suspended taskSuspend()
delayed ———p ready expired delay
delayed —— p suspended taskSuspend()
- suspended ——p ready taskResume() / taskActivate()
suspended — p pended taskResume()
suspended ——p delayed taskResume()

2.3.3 Wind Task Scheduling

Multitasking requires a scheduling algorithm to allocate the CPU to ready tasks.
Priority-based preemptive scheduling is the default algorithm in wind, but you can
select round-robin scheduling for your applications as well. The routines listed in

Table 2-2 control task scheduling.

Table 2-2 Task Scheduler Control Routines

Call Description

kernelTimeSlice() Control round-robin scheduling.
taskPrioritySet() Change the priority of a task.
taskLock() Disable task rescheduling.
taskUnlock() Enable task rescheduling.

Courtesy Wind River Corporation, VxWorks Programmer’s Guide 5.4

X86 CPU ZFx86 Training Page 36

37

8259A PIC Interrupts

Within the chip we have 15 different maskable inter-
rupts. These are all the ISA bus interrupts which you
are normally used to seeing. What happens on the
ZFx86, however, is that we have a PCl bus and an ISA
bus. Because we have both buses, the interrupts need
to be shared between the two. The designer of the sys-
tem needs to figure out which interrupts his going to
use where. These maskable interrupts are used for
cards on the ISA bus and cards on the PCI bus.

X86 CPU ZFx86 Training Page 37

NMI, SMI and SCI

NMI (nonmaskable interrupt) this is an interrupt which
can never be turned off. It is always available to the
hardware. Nonmaskable interrupt allows very impor-
tant events to interrupt the processor even if the pro-
cessor has quote turned off" interrupt because it is
perhaps inside interrupt service routine for a critical
section of code.

SMI (system management interrupt) puts a CPU into
system management mode. The system management
mode is a totally separate address space and
interrupts space that allows you to use the device
without any of the applications are headed the
operating systems to know what's happening down
below. Itis a really powerful feature those people who
need to really get deeply into the device.

SCI (system controller interrupt) -- generally used with
ACPI (Advanced Configuration & Power Interface).

Up to eight GPIOs in the South Bridge are provided for system control. There are 8 GPIO pins on the ZFx86. The
features include power management event (PME) generation. This means that any of the 8 GPIO pins set in
input mode can be used to wake up the processor. That is, each GPIO pins can be programmed to generate an
SMI or SCI. The Watchdog Timer can also generate RESET, NMI, SMI, or SCI. See ‘Watchdog Timer’ on page
99.

Developed by Intel, Microsoft and Toshiba and announced on January 6, 1997, ACPI is an open industry (any-
one can use it), all-encompassing, PC hardware, Operating System and peripheral device interface spec-
ification. In other words, it specifies a certain manner in which the OS, motherboard hardware and peripheral
devices (such as CD-ROMs, Hard Drives, etc.) talk to each other about power usage. Its primary goal is to
enable Operating System Directed Power Management (OSPM) whereby the Operating System manages all
power activities — providing power to devices only on an as-needed basis. See http://www.teleport.com/~acpi/

X86 CPU ZFx86 Training Page 38

http://www.teleport.com/~acpi/

39

Interrupt Vector Assignment

Interrupt 5 is free because we only have one parallel port onboard. 9, 10, 11, and 12 are
free interrupts. The floppy, which is an internal device, picks up interrupt six.

Traditionally interrups 9,10,11 and 12 are routed to INTA, INTB, INTC and INTD on the PCI
bus. On the PCI bus, all four interrupts go to all four of the slots. What is typically done, when a
card is plugged into the first slot, yet it is a single function device it uses INTA. [fitis a dual
function device, say video and audio together, it uses INTA and INTB. What designers normally
to it is that on the first slot that been designated interrupt a goes to interrupt a. On the second
slot, the designated interrupt a goes to interrupt b. On the third one, they route it to c. This
allows devices which are plugged into the slots to always have high priority, because their inter-
rupt a will be routed to 10,11, or 12. The problems come in if you try used 12 for the fourth slot
(if you have a fourth slot) and you have a mouse in your system. Traditionally the mouse also
occupies interrupt 12. So it's very easy to come up with a situation where you have conflicts on
your interrupts. People will run into this trap over and over again. They won't know how to use
these four interrupts together with interrupt 5, and they won't know which ones to put on the ISA
bus in which was to put on the PCI bus.

Regarding interrupt conflicts, we have many many devices onboard. Of course, in people don't
need those devices they can always turn them off.

Table 2.1: Interrupts

INTERRUPT USE USE EXTERNAL
Master 0 IRQO System Timer No
Master 1 IRQ 1 Keyboard Controller No
Master 2 IRQ 2 Slave Interrupt Controller input No
Master 3 IRQ 3 Secondary Serial port (shared) Yes
Master 4 IRQ 4 Primary Serial port (shared) Yes
Master 5 IRQ 5 User Defined Yes
Master 6 IRQ 6 Floppy Disk No
Master 7 IRQ7 Parallel Port (shared) Yes
Slave 0 IRQ 8 RTC No
Slave 1 IRQ 9 User Defined. Can be PCI interrupt A. Yes
Slave 2 IRQ 10 User Defined. Can be PCl interrupt B. Yes
Slave 3 IRQ 11 User Defined. Can be PCl interrupt C Yes
Slave 4 IRQ 12 User Defined. Can be PCI interrupt D Yes
Slave 5 IRQ 13 Math Coprocessor No
Slave 6 IRQ 14 Primary IDE Channel Yes
Slave 7 IRQ 15 Secondary IDE Channel Yes

X86 CPU ZFx86 Training Page 39

Real Mode (DOS)

LOGICAL ADDRESS

4——16 bits —pj¢——16 bits —
OFFSET

MEHMORY

PHYSICAL
ADDRESS

BASE + OFFSET =

1 MB

ADDRESS 78 BITS

X86 CPU ZFx86 Training Page 40

41

Extended and Expanded Memory in Real Mode

648K DOS
HMEMROY

Expanded or Paged memory was designed for the IBHM HT
since the machine only supported 1 MB of address space.
Lotus, Intel and Microsoft designed the LIHM EHS
specification so that large spreadsheets requ1r1ng a
lot of memory would be supported on the

Tyvpically 1-8 MB of memory appears on a board and the
memory is paged into free address space between the 648K

boundary and the start of the ROM BIOS.

EMM HARDWARE Paging in is done by mapping the EMS
memory into 4 16K pages of free address

KM BIOS

X86 CPU

i

Y86 SOF TWARE space. This can be done with hardware.

or by using page translation software.

The extra memory in the XT came from a large
memory board. Hardware mapped that in 16K blucks
to low memory addresses. INT 67H was used to
control the mapping. The software interface was
the standard —— different implementations of the
hardware from different wvendors was supported by
a common software [INT 67H] interface.

ZFx86 Training Page 41

Basic Protected Mode Operation

LOGICAL ADDRESS (16:32 pointer)
l——16 bits — ¢ 32 bits ——)
OFFSET

MEHMORY

LIMIT 15-08

BASE 15-8 LINEAR ADDRESS

BASE ACCESS
23-16| RIGHTS I

BASE L 32 bits —>|
31-24 [GBOA| LIM

DIR PAGE OFFSET
LIMIT 15-08

BOSE 15-8

ENEENEEEEEEEEEEEEE
BASE ACCESS EENEEEEEEEEEEEEEE

23-16| RIGHTS FH'IISICN_
PAGE TRANSLATION m
angl—zd GBOA| LIM EEEEEEEEEEEEEEEEE ADDRESS

LIMIT 15-08

BASE 15-0

ErEE access NEW PAGE
23-16)

SAEE l— 28 bits —
124 [BBOA| LIM

8-32 HB

DESCRIPTOR TABLE

X86 CPU ZFx86 Training Page 42

43

Privilege Levels — Data Access

Privilege levels: there are four different privilege levels. It's a standard x86
processor. But for those guys you need to convince the RISC processors bet-
ter than this, these are the things that we pick up in legacy. A lower privileged
task cannot modify memory which has been assigned by a higher privileged
task or by the operating system.

RIng Model of Protection

RULES OF
PRIVILEGE
LEVEL 3 SATH
LEAST TEUSTED SEGMEHNT
LEVEL =2 DATA ‘ % y] _CODE
SEGHEHT SEGHEHNT
-
LEVEL 1 FODE
SEGHEHT
LEVEL O
MOST TRUSTED

(1) A program can call to a code segment descriptor at its own privilege level, or to code segments that are more
trusted. It cannot call to code segments that are less trusted.

A program can RET to a code segment at its own privilege level, or to code segments which are less trusted.

(2) A program can access data at its own privilege level, or data which is less privileged. It cannot access data
which is more privileged.

(3) There are two bits in the flag word called the IOPL (input/output privilege level) which establish what degree
of privilege is required before a program can execute any IN or OUT instructions.

X86 CPU ZFx86 Training Page 43

44

Privilege Levels — Code Access

TRANSFER THROUGH
A CALL GATE

CODE
SEGHMEHT

LEVEL 1

LEVEL O
MOST TRUSTED

X86 CPU

ZFx86 Training Page 44

45

MMU — Page Level Protection

PROCESS #1

LINEAR
ADDRESS
SPACE

page
directory

PHYSICAL
MEMORY

PROCESS #2

page
directory

private
objects

tables

SHARED
OB JECTS

312 HMEBE

X86 CPU

shared
objects

tables

I~

tables

ZFx86 Training Page 45

shared
objects

LINEAR
ADDRESS
SPACE

FRIVATE
MEMORY

SHaAarRED
OB.JECTS

512 HMB

46

MMU — Page Directory and Page Tables

31 —— 12 11 O oM CHIF REGISTER WHICH
= POIMTS TO
| LR3 = OF PAGE DI RECTORY HOOO00000000 THE PrEE
=1 2z 21 12 11 o DIRECTORY
CINERR DIR FAGE TOFFSET
o MI |4— 18 EITS —H4+— 12 ET TS —PL—lE EIT=S
| l+ 4 ME ¥l
31 : o
FATSICAL AODRESS UR
OF PAGE TABLE o RES 00 DROG S P THE PAGE CIRECTORY
FHYSICAL ADDRESS UR IS ALWAYS 4K BYTES
e —
I
I = e RES 00 DAOD 2F P 4 BIGAEYTES.
=1 : ;
FHTSICAL ADDRESS OF UE
MEMORY FOR DIE = Pace ¢ | FESO0 DROD AP THERE 15 OME 4K
W[ERvSICAL FCDRESS OF R PAGE DIRECTORY FOR
"|__MEMORY FOR DIE 2 Pace 1 | RESOCDROOEGP) o o F LINERR
PHYSICAL ADDRESS OF R
HEvoRT FORBIE 2 Proe = | FES©o DAOo S P| ADDRESS SPACE.
=1 12 14 o
o PHYTSICAL ADCRESS OF OFFSET
AODRESS HMEHORY FOR DIR 2 PAGE 1 b——a12 BITs —+

12 BITS ARE THE OFFSET
WITHIM THE CURREMT PRGE

X86 CPU ZFx86 Training Page 46

47

MMU — Translation Look-Aside Buffer

Physical fAddress DaSE

X86 CPU ZFx86 Training Page 47

48

|IOPL and SMM Protection

IOPL Protection

SMM Protection

X86 CPU ZFx86 Training Page 48

49

On Chip — L1 Cache

36% PREFETCHES

227 WRITES

X86 CPU

427 READS

386DX CPU BUS CYCLE MIX

774 WRITES

874 READS

157 PREFETCHES

88486 CPU BUS CYCLE MIX

ZFx86 Training Page 49

50

Integrated FPU

The floating point unit allows you to process information much faster. Some of
the newer operating systems require the floating point unit.

X86 CPU ZFx86 Training Page 50

Why Not Crusoe

51

VALIDATION OF x86 ARCHITECTURE:

LONG WORD INSTRUCTION PROCESSOR SIMULATES x86
PROCESSOR.

ZFx86 NATIVE x86 - CROSS LICENSED W/ INTEL
PERFORMANCE IMPACT DUE TO “CODE MORPHING” SW
HAD TO “RE-INVENT THE WHEEL” AND DEVELOP A NEW
PROCESSOR ARCHITECTURE

LIMITED INTEGRATION

ONLY HAS PCI, SDRAM AND ROM INTERFACES

DOES NOT HAVE FLOPPY, IDE, USB, SERIAL, PARALLEL,
GPIO, PWM, ISA, 12C, REALTIME CLOCK, IRQ, DMA,
MOUSE, KEYBOARD, WATCH DOG TIMER

DOES NOT HAVE VARIABLE WIDTH DRAM BUS,
THEREFORE, MUST USE 32MB DRAM.

CODE MORPHING CODE USES 8-16MB DRAM.

DOES NOT HAVE BUILT IN ROM.

POWER SAVINGS MODES

POWER SPECS STATED HAVE “POWER MANAGEMENT
ENABLED” THIS MEANS THAT PEAK POWER
CONSUMPTION IS AT LEAST 2X THE CHART.

ZFx86 WITHOUT POWER MANAGEMENT IS ABOUT 1 W.
ZFx86 HAS SAME POWER MANAGEMENT STATES WITH
THE ADDITION OF MANY DIFFERENT AND DISTINCT
WAKE-UP INTERFACES

X86 CPU ZFx86 Training Page 51

50

Why Not Crusoe

SERIAL ROM INTERFACE

ZFx86 HAS PATENT PENDING ON ZTAG INTERFACE.
MAY COVER CRUSOE SERIAL ROM INTERFACE.
CERAMIC PACKAGE

ZFx86 HAS PLASTIC (LESS EXPENSIVE) PACKAGE
COMPETITION AIMED AT PENTIUM SPACE

CHASING MEGAHERTZ AND DESKTOP PROCESSORS
AGAINST BILLION DOLLAR COMPETITORS

SW INTEGRATION MISSING

DOES NOT INCLUDE BIOS OR REAL TIME OS.

SYSTEM COST MUCH HIGHER

LACK OF INTEGRATION REQUIRES ADDITIONAL CHIPS
WIDE DRAM BUS FORCES A FOUR DRAM BUS
CONFIGURATION

X86 CPU ZFx86 Training Page 52

53

ZFx86 Training Book

Chapter 3 - North Bridge

North Bridge ZFx86 Training Page 53

12/4/01

54

ZFx86 Block Diagram

Chip
Interface

32-Bit X86 Processor Core

FPU
8K L1 Cache

Backside South 2 USB Deviceg
PCI e Bridge 4 IDE Devices
| 8 GPIO
I - —
| Super 1/O
| Floppy Disk PS/2 Mouse
Z-tag Z-tag :
- Parallel Port Real-Time CIk
Interface : Controller 5 Serial Ports 2C Bus
JTAG - Test Mode AT Keyboard
B&%ndt;?'lypéncdan
ISA Bus ?
I
I
| ZF-Logic
| ZF-Logic Register Set
: ZF Fail-Safe Programmable Z-tag interface
| Boot ROM Programmable PWM Generator
[ISA Memory Mapper for Flash/SRAM
| 12K Boot ISA 1/0 Mapper
I 1D ROl Bootstrap Control Register
ZFx86 | (BUR) Dol Watohdog T
Fail-Safe | O o
PC-on-a-Chip I User/BIOS Scratch Registers
Block Diagram |
L e e e e e — — -

North Bridge

i

~

North
Bridge

‘ Frontside PCI

ZFx86 Training Page 54

55

North Bridge Features

» CPU single cycle and burst bus transactions support
» Cache coherency support
» Support for SMM bus cycles

* Memory Controller to support Synchronous DRAM (SDRAM). Memory
can be configured as 16 or 32 bits wide.

» Support for up to four banks of SDRAM and 256 Mbytes of memory
space

» CPU bus to PCI bus bridge with PCI arbiter. Support for three external
masters and one internal master. Any on chip or off chip master must
connect via this interface.

» External PCI bus mastership. External bus mastership of System
Controller internal bus. Mastership allows access to system controller
memory devices.

+ SDRAM Write Buffer — 32 Bytes

» CPU to PCI Write Buffer — 32 Bytes

» PCI Write Buffer — 16 Bytes

» PCI Read Pre-fetch Buffer — Dual 16 Bytes

» Support for Power Management signals from the South Bridge

North Bridge ZFx86 Training Page 55

56

North Bridge Features Q&A

1]

4]

5]

What is “North Bridge CPU single cycle and burst bus transactions
support’? What is a burst cycle and how and why does the North Bridge
get involved?

What is cache coherency support and why would the North Bridge need
to support it? Is this a unique ZFx86 feature?

What are SMM bus cycles and why would the North Bridge need to sup-
port them?

Why is there a benefit if the chip supports memory which is either 16 or
32-bits wide? Why is the a benefit of having 4 banks each having a maxi-
mum size of 64 MB rather than 1 bank with a maximum size of 256 MB?

Why do we need a CPU bus to PCI bus bridge? What is a CPU bus and
what is a PCl bus? What is a bridge? What is the difference between a
North Bridge and a South Bridge? Why do we discuss arbritration and
PCI bridges at the same time, are they related? Is this unique to the
ZFx867?

North Bridge ZFx86 Training Page 56

57

North Bridge Features Q&A (Continued)

6]

7]

8]

[]

What is support for three external masters and one internal master.
Who could be a master? What is an internal master and why can you only
have one? What is an external master (external to what)? Why can you
only have three? What would be a typical external master and why would
one want to have one?

What is the benefit of all of these buffers? If they are so important, then
doesn’t everyone have them?

SDRAM Write Buffer — 32 Bytes

CPU to PCI Write Buffer — 32 Bytes

PCI Write Buffer — 16 Bytes

PCIl Read Pre-fetch Buffer — Dual 16 Bytes

What is the relationship between Power Management and the South
Bridge? Why does the North Bridge need to support power management
signals in the South Bridge? Where do they come from, where do they go,
and how are the signals turned on and off? Is this any different than the
way that other contemporary chips work?

Check Your Answers on Page page 66.

North Bridge ZFx86 Training Page 57

North Bridge Overview

The North Bridge components was traditionally a Pentium class North Bridge;
many of the features that you will find in the North Bridge are all Pentium class
features. One of the things which is unique about our design is that the proces-
sor is fast enough so that it competes with some of the lower end Pentium's in
terms of processor power.

When you go to the manual in the North Bridge a lot of these things are
pointed out: cache coherency, CPU write-thru and write back cache support
etc.

We do concurrent PClI and DRAM access.

We now have chips at 66 MHz system clock which means that the DRAM
interface for the chip is running at 66 MHz. That is a very high-performance
configuration. The system performance is almost double having a 66 MHz
system clock and a 133 MHz processor vs. having a 33 MHz system clock and
a 133 MHz processor. The processor just starves to death with no data.

North Bridge ZFx86 Training Page 58

59

North Bridge SDRAM Controller

There are lots of things in the North Bridge. But the North Bridge has two
major tasks: the first one is an SDRAM controller. The SDRAM controller
manages the DRAM facilities are onboard.

SDRAM rather than EDO/Fast Page RAM

We have chosen an SDRAM interface which is much faster than
the normal EDO. or fast page mode interfaces. Also, EDO and

fast page mode are quickly going away and you can't buy them”

We have up to four banks and up to 256 MB of memory, so that the really want
to have a lot of memory in your system you are welcome to do that.

SDRAM vs. EDO or fast page mode memory. SDRAM is a very fast DRAM.
Essentially once we've pumped up and put out two clock pulses it will provide
data on every clock. That is much faster, almost twice as fast, as EDO or fast
page mode memory.

It is important we provide support for 16 Mb, 64 Mb and 128 Mb (bit) devices
with addresses to A11 (12 address lines). You can mix DRAM sizes and
widths on different banks.

1. The SDRAM interface is a good feature to have. Many of the competitors
still use EDO memory.

The Elan 410/410 is still stuck with older DRAM interfaces. The new AMD pro-
cessor does have the SDRAM interface, but it is the only one. Many RISC
processors still use EDO/fast page mode memory. So this advantage is impor-
tant.

North Bridge ZFx86 Training Page 59

60

North Bridge SDRAM Controller (Continued)

16 or 32-bit wide DRAM Bus

One key feature that we have which allows us to have a $30 or $40 cost
advantage over the competition is the ability to go with either a 16-bit wide or a
32-bit wide DRAM bus. Why is this important? Because most of the devices
which are sold are sold in configurations which are only 16-bit wide

When you power up the system for the first time with our chip all you need is a
single DRAM chip 16-bits wide. When you look that all the competitors, espe-
cially the MediaGX, the Pentium class processors, ST microelectronics pro-
cessor, the industrial PC, the consumer PC, they all have 64-bit wide DRAM
busses. The 64-bit means that as a minimum you need four DRAM chips to
start up the system. That tend to $13 a chip, you have three extra chips that
you need. That gives us a 30 to $40 price advantage for anybody who wants a
really small embedded system.

North Bridge ZFx86 Training Page 60

61

North Bridge PCI

The PCI features of the North Bridge: the North Bridge controls who gets on
the first. There's bus mastering which occurs. This essentially means that

any device which is on the PCI bus can take control of the entire system and
grab memory by itself. This is arbitrated by the North Bridge.

You have concurrent PCl and DRAM access from the processor, allowing the
processor to write to the PCI and the DRAM at the same time. This is a very
powerful feature.

The North Bridge has CPU single cycle and burst bus transaction support.

That means that you can ask for one word at a time, or a string of words at a
time.

North Bridge ZFx86 Training Page 61

62

North Bridge Cache Management

Cache management: when you have a cache on chip the data inside starts
getting old. There are times when the North Bridge decides the data that is
inside the cache needs to be flushed back to main memory because some
device is asking for that memory location (that has been updated in the cache
already).

North Bridge ZFx86 Training Page 62

63

Bus Arbirtration on the PCI| Bus

Bus arbitration: essentially the North Bridge is the guy who decides who gets
the PCI bus. The North Bridge is the one which will support up to three extra
masters and two internal masters: the CPU and the South Bridge. So we have
up to five devices that can master the PCI bus: three of them are external and
two of them are internal. When you look at the competitors, AMD has the Elan
520 which allows five bus masters: this is one area where they have a couple
more features than we do. The normal answer that | would provide anyone
who is questioning me on this area is that if you have a processor with this kind
of processing power, to put by PCI bus masters on it is probably overkill any-

way.’

1. However, you can always add an external chip which allows you to pig-
gyback bus masters. Each chip allows you four more masters, but takes up
one master. So each chip gives you a net gain of three masters.

North Bridge ZFx86 Training Page 63

64

PCI vs. ISA bus mastering

We do not support ISA bus mastering. Typically bus mastering is something
which issues to make the system go very fast. To make things happen quickly.
Since we do support PCI bus mastering, if any customer has a concern about
data availability or getting data to the processor issue just use the PCl. When
you look at some of the differences, the clock is 8 MHz on the one hand 33
MHz on the other.

Item ISA PCI Comment
Clock 8 MHz 33 MHz | factor of 4
Data width 16 bits 32 bits factor of 2
Bus Master- No Yes Complexity of adding ISA bus
ing mastering to North bridge con-
troller was not warranted.

Although ISA bus mastering is not supported, DMA is supported on the ISA
bus. So you can have direct memory access from the ISA bus but it will
involve the CPU. We have both an 8-bit and 16-bit DMA transfer available to/
from the ISA bus.

The complexity that we would have had to add to the chip do support ISA as
well as PCI bus mastering was not worth the trade-off.

North Bridge ZFx86 Training Page 64

65

The Role of the NB in Power Management

The other thing that the North Bridge does is support the power management
signals from South Bridge.

North Bridge ZFx86 Training Page 65

Answers to Questions

<page 56>

1]

4]

5]

What is “North Bridge CPU single cycle and burst bus transactions sup-
port”? What is a burst cycle and how and why does the North Bridge get
involved?

What is cache coherency support and why would the North Bridge need to
support it? Is this a unique ZFx86 feature?

What are SMM bus cycles and why would the North Bridge need to support
them?

Why is there a benefit if the chip supports memory which is either 16 or 32-
bits wide? Why is the a benefit of having 4 banks each having a maximum size
of 64 MB rather than 1 bank with a maximum size of 256 MB?

Why do we need a CPU bus to PCI bus bridge? What is a CPU bus and what
is a PCIl bus? What is a bridge? What is the difference between a North Bridge
and a South Bridge? Why do we discuss arbritration and PCI bridges at the
same time, are they related? Is this unique to the ZFx867?

North Bridge ZFx86 Training Page 66 Answers to Questions

6]

7]

8]

What is support for three external masters and one internal master. Who
could be a master? What is an internal master and why can you only have one?
What is an external master (external to what)? Why can you only have three?
What would be a typical external master and why would one want to have one?

What is the benéefit of all of these buffers? If they are so important, then doesn’t
everyone have them?

SDRAM Write Buffer — 32 Bytes

CPU to PCI Write Buffer — 32 Bytes

PCI Write Buffer — 16 Bytes

PCI Read Pre-fetch Buffer — Dual 16 Bytes

What is the relationship between Power Management and the South Bridge?
Why does the North Bridge need to support power management signals in the
South Bridge? Where do they come from, where do they go, and how are the
signals turned on and off? Is this any different than the way that other contem-
porary chips work?

North Bridge ZFx86 Training Page 67 Answers to Questions

68

ZFx86 Training Book

Chapter 4 - South Bridge

South Bridge ZFx86 Training Page 68

12/4/01

69

ZFx86 Block Diagram

Chip
Interface

32-Bit X86 Processor Core

FPU
8K L1 Cache

Backside South 2 USB Deviceg
PCI e Bridge 4 IDE Devices
| 8 GPIO
I - —
| Super 1/O
| Floppy Disk PS/2 Mouse
Z-tag Z-tag :
- Parallel Port Real-Time CIk
Interface : Controller 5 Serial Ports 2C Bus
JTAG - Test Mode AT Keyboard
B&%ndt;?'lypéncdan
ISA Bus ?
I
I
| ZF-Logic
| ZF-Logic Register Set
: ZF Fail-Safe Programmable Z-tag interface
| Boot ROM Programmable PWM Generator
[ISA Memory Mapper for Flash/SRAM
| 12K Boot ISA 1/0 Mapper
I 1D ROl Bootstrap Control Register
ZFx86 | (BUR) Dol Watohdog T
Fail-Safe | O o
PC-on-a-Chip I User/BIOS Scratch Registers
Block Diagram |
L e e e e e — — -

South Bridge

i

~

North
Bridge

‘ Frontside PCI

ZFx86 Training Page 69

70

Definition of Functional Blocks

Looking to block diagram, the South Bridge is another
very standard Pentium class device. Some devices
are internal to the South Bridge. They are connected
directly on the front side PCI bus. These are the USB
devices, the IDE devices, and GPIO. All of these
come on chip. In addition to that the South Bridge con-
trols what is called the Super 1/O.

Functional blocks

Here is a list of things that the South Bridge does.

Front Side PCI Interface
Back Side PCI Interface

Bus Mastering IDE Controller
Universal Serial Bus
Integrated Super I/O
ACCESS.bus interface

AT Compatibility

ISA Interface

Power Management

GPIOs

South Bridge ZFx86 Training Page 70

Bus Comparison

Bus Type Speed Distance Noise Device
(MB/s) Complexity
Access? 0.1875 12 inches Low Simple
SerialP 0.0115 100 feet | Med/High Medium
Parallel 10 feet Low Medium
ISAC 4 12 inches Low High
USRA 1,2,4 5 feet High Medium
PCI® 132 4 inches Low High
IDEf 4 12 inches Low High
GPIO 1 12 inches Low Simple
IrDAY 0.115-4.0
Z-Tag 1.5 Simple

a.For I12C Bus, see http://www-us.semiconductors.com/i2c/

b.See ‘Serial Port’ on page 76

c. See ISA System Architecture, by Don Anderson and Tom Shanley
(MindShare) (ISBN 0-201-40996-8)

d.See http://usb.org/. See also ‘USB.ORG Website’ on page 74.

e.See PCI| Hardware and Software Architecture & Design, 4th Edi-
tion, Solari & Willse, Annabooks, IBSN 092939259-0. See also the
PCI SIG on the web at http://www.pcisig.com/index.php3?t2=1

f. For Ultra DMA Ultra DMA Implementation Guide,_http://
www.wdc.com/products/drives/drivers-ed/udmatp.html

g.For IrDA and Linux, see http://www.cs.uit.no/linux-irda/ . Some IrDA
Data Sheets appear on the ZFx86 IDS CD. The Superl/O incorpo-
rates an Infrared Communication Port that supports FIR, MIR, HP-
SIR, Sharp-IR, and Consumer Electronics-IR. The IrDA data rate is
up to 115.2 Kbps (SIR), Data rate of 1.152 Mbps (MIR), Data rate of
4.0 Mbps (FIR). See ‘Infrared Communication Port’ on page 77.

South Bridge ZFx86 Training Page 71

http://www-us.semiconductors.com/i2c/
http://usb.org/
http://www.pcisig.com/index.php3?t2=1
http://www.wdc.com/products/drives/drivers-ed/udmatp.html
http://www.wdc.com/products/drives/drivers-ed/udmatp.html
http://www.cs.uit.no/linux-irda/

Front Side Vs Back Side PCI

It is possible to clock the front side of the South Bridge
at one speed and the Back Side side of the chip at

another speed.
IFront Side PCI

33-66 MHz P -
UDMA33 FXBus e Back Side PCI
4——p IDE [- PCl Inferface -
-
. e 33 MHz
Configuration
GPIOs Registers

GPIOs USB
t XBus ?

‘ USB
-
Legacy
PW (ISA/PIC/PIT/DMA)
PM Floppy/Parallel/Serial/
IR/RTC/Access Bus/
¥ Fan CTRL/KBD-Mouse/
Logic Wake-Up
SI0 [-

t ISA

South Bridge ZFx86 Training Page 72

73

Bus Mastering IDE Controller

The IDE controller is very powerful. It supports all the
types of IDE transfers that exist. It supports the P1O
modes 0,1,2,3, Ultra DMA, ATA format compatible. If
you get the question "does the chip do it", the answer
IS yes.

« One channel with support for up to two IDE devices
« Second IDE channel for two more devices off GPIO
* Independent timing for master and slave devices

» PCI bus master burst reads and writes

* Ultra DMA (ATA-4) support

* Multiword DMA support

* Programmed |/O (P1O) Modes 0-4 support

South Bridge ZFx86 Training Page 73

74

USB.ORG Website

CERTIFIEDR

Shopping for USE
USB Features
USB FAQ

About USB-IF, Inc.

Which of the
following is true of
Hi-Speed USE 2.07

" 2) 0% faster
than the original
UsSBE

" by Fully
compatible with the
otiginal USE

" ¢ Cartified

products bear this
logo:

" d) Awarded
CMET's "Best
Emerging
Technology Award”

" &) All of the
Above

“iew Results

Yotel |

CHANNEL | PRESS | DEVELOPERS | m]mn]

South Bridge

Hi-Speed USE 2.0 Gears Up for Broad
Deployment in 2002

Fress, analysts invited to hear how milestones,
announcements through end of vear are laying the
foundation

(pdf, 94k) @

USB Implementers Forum Signals Broad
Development of Hi-Speed USB 2.0 at Intel

Developer Forum
First-time demonstrations, announcements and other

displays of upcoming broad deployment of USB 2.0
(pdf, 93k) @

USB Implementers Forum Drives Bus Into
the Fast Lane

Microsoft Demonstrates LWSE 2.0 Drivers for Windows
#P at USE 2.0 Developer Conference.

(pdf, 13k) @

About USB

welcome

from the creators of USB

Addonics AEED25U, Pocket USB 2.0 Hard Drive () ' i

THE AWARD GOES TO...

Winner: Hi-Speed USB
v 4 2.0 for Technical
Excellence

PC Magazine has bestowed the
Eighteenth Annual Award for
Technical Excellence to USB 2.0
in the Specifications category.
This award is given to innovators
who have found new solutions to
old problems. USE 2.0 was
selected for this honor because of
the camman interface it provides
and the high data transfer rate. @

CNET's 'Best Emerging
Technology® award goes to USB
2.0 at PC Expo

Inthe area of Best Emerging
Technology, CMET's award goes to
USE 2.0, This award does not go
to any one company but to all of
the industry pioneers that
recognize the value of this new
standard. The factors that make
LUSE 2.0 so0 pramising are its
speed, its backward compatibility
with LISB 1.1, and its broad
industry support. @

...USB 2.0/

Universal Serial Bus (USE) connects more than camputers and peripherals. It has the power to

connect you with a whole new warld of PC experiences.

ZFx86 Training Page 74

75

Super /O

What's inside the Super I/O?

« PC98 and ACPI Compliant

* Floppy Disk Controller (FDC)
 Parallel Port

* Serial Ports 1 and 2

* Infrared Communication Port

» Keyboard and Mouse Controller (KBC)
» System Wake-Up Control (SWC)

* Real-Time Clock

Access bus. See text on page 80.

Parallel Port (EPP, ECC, IEEE 1284). Once again,
does the chip do it? Yes! See text on page 78.

* |t does EPP.
* It does ECC.
* It does IEEE 1284.

« It is fully compatible.

South Bridge ZFx86 Training Page 75

76

Serial Port

What you will find is the chip does what has tradition-
ally been done with the serial port, plus. And with this
chip, there's almost always a plus. For example, what
is the traditional serial ports rate? 115K baud. How
fast does this one go? 1.5 Mb. We always to what the

traditional thing does plus. Does the chip do it? Yes,
it's in there!

—Software compatible with the 16550A and the 16450
—Shadow register support for write-only bit monitoring
—UART data rates up to 1.5 Mbps

South Bridge ZFx86 Training Page 76

77

Infrared Communication Port

The Infrared Comm Port contains the following:

Data rate of up to 115.2 Kbps (SIR)
Data rate of 1.152 Mbps (MIR)
Data rate of 4.0 Mbps (FIR)

Selectable internal or externalmodulation/demodula-
tion (Sharp-IR)

Consumer-IR (TV-Remote) mode

Software compatible with the 16550A and the 16450
Shadow register support for write-only bit monitoring
HP-SIR

ASK-IR option of SHARP-IR

DASK-IR option of SHARP-IR

Consumer Remote Control supports RC-5, RC-6,
NEC, RCA and RECS 80

Non-standard DMA support - 1 or 2 channels

South Bridge ZFx86 Training Page 77

7 Parallel Port

Parallel Port (EPP, ECC, IEEE 1284). Once again,
does the chip do it? Yes! It does EPP. It does ECC. It
does IEEE 1284. It is fully compatible.

» Software or hardware control

* Enhanced Parallel Port (EPP) compatible with new ver-
sion EPP 1.9 and IEEE 1284 compliant

» EPP support for version EPP 1.7 of the Xircom specifica-
tion

« EPP support as mode 4 of the Extended Capabilities
Port (ECP)

» |IEEE 1284 compliant ECP, including level 2

» Selection of internal pull-up or pull-down resistor for
Paper End (PE) pin

» PCI bus utilization reduction by supporting a demand
DMA mode mechanism and a DMA fairness mechanism

* Protection circuit that prevents damage to the parallel
port when a printer connected to it powers up or is oper-
ated at high voltages, even if the device is in power-
down

» Output buffers that can sink and source 14 mA

South Bridge ZFx86 Training Page 78

System Wake Up Control

79

System wake-up control. There are all types of real-
time clock alarms. This device can be awakened in so
many ways that once again the answer (to the ques-
tion does the chip do it) is yes! You can wake up on
the modem, on the keyboard, on right clicks, on left
clicks, on double clicks, on general-purpose events
(GPIO inputs) -- -- there are all kinds of different ways
to wake up the chip after you put it to sleep.

» Power-up request upon detection of Keyboard, Mouse, RI1,
RI2, RING, PME1 and PMEZ2 activity, as follows:

Preprogrammed Keyboard or Mouse sequence
External modem ring on serial ports

Ring pulse or pulse train on the RING input
General-purpose events, PME1 and PME2

- Battery-backed wake-up setup
» Power-fail recovery support

South Bridge ZFx86 Training Page 79

30

Access (1°C) Bus

What is an access bus? It's a very simple interface --
it's two wires that allows you to do multi-drop. Multi-
drop allows you to put more than one device on the
chain. The access bus is compatible with the Philips

I°C bus or Intel's System Management Bus (SMB). It

does what these buses do and more. It runs up to
1.5 Mbps.

South Bridge ZFx86 Training Page 80

Real Time Clock

81

Real Time Clock contains the following:

« Accurate timekeeping and calendar management
« Alarm at a predetermined time and/or date
* Three programmable interrupt sources

« Valid timekeeping during power-down, by utilizing external battery
backup

» 242 bytes of battery-backed RAM
* RAM lock schemes to protect its content

* Internal oscillator circuit (the crystal itself is off-chip), or external
clock supply for the 32.768KHz clock

A century counter

* PnP support

* Relocatable index and data registers

* Module access enable/disable option

* Host interrupt enable/disable option

» Additional low-power features such as:

» Automatic switching from battery to VCC_IO

* Internal power monitoring on the VRT bit

* Oscillator disabling to save battery during storage

» Software compatible with the DS1287 and MC146818

South Bridge ZFx86 Training Page 81

82

Real Time Clock Alarms

Real-time clock alarms: the timekeeping function used
generate an alarm when the current time reaches a
stored alarm time. Essentially, you wake up the chip
based on an alarm instead of an external event, or you
use the alarm to trigger various events

South Bridge ZFx86 Training Page 82

83

ZFx86 Training Book

Chapter 5 - ZF-Logic

ZF-Logic ZFx86 Training Page 83

84

ZFx86 Block Diagram

I
: | 32-Bit X86 Processor Core
Chip <! -
Interface | FPU
| 8K L1 Cache
I
.]
! North
SDRAM . > Bridge
I
| ‘ Frontside PCI
I .
Backside South 2 USB Devices
PCI 0 Bridge 4 IDE Devices
| 8 GPIO
| S ——————
| Super I/0
| Floppy Disk PS/2 Mouse
Z-tag Z-tag :
- Parallel Port Real-Time CIk
Interface : Controller 2 Serial Ports 2C Bus
JTAG - Test Mode AT Keyboard
Bguonndt;orlyASnc%n
ISA Bus ?
|
I
| ZF-Logic
! ZF-Logic Register Set
: ZF Fail-Safe Programmable Z-tag interface
| Boot ROM Programmable PWM Generator
[ISA Memory Mapper for Flash/SRAM
| 12K Boot ISA 1/0 Mapper
I =9 XOi Bootstrap Control Register
ZFX86 | (BUR) Dual Watchdog Ti
Fail-Safe | ual Watchdog Timer .
PC-on-a-Chip I User/BIOS Scratch Registers
Block Diagram |
L e e e e e e e e e e e e

ZF-Logic

ZFx86 Training Page 84

85

ZF-Logic Block Diagram

/|/System FDD Lines

Internal ISA Bus |

FDD Lines
FDD MUX .
ZFx86 Internal Z-tag
Boot Up ROM -
(BUR) |O/Mapper — °
CS
PWM PWM_,
wdi, wdo
ISA Interface Wathdog
o the ZFL NMI, SCI, SMI,
Register Set or reset
Ports 218-21A |)
ISA Memory Mapper IVIem—_cs.
Scratch
Registers
Bootstrap < Read 24-Bits on Reset
Registers

Address |ISA Address

MUX ISA Address

ZF-Logic Features

Note: The features of the ZFL include:

» ZFL Register Set in ISA 1/0 Space

* Programmable PWM generator

* Programmable Watchdog timer

» ISA Memory Mapper for Flash/SRAM

* ISA I/0 Mapper General Purpose Chip Select (GPCS)

* Programmable Z-tag Interface

+ Bootstrap Register (DIP switches/Pull-Ups) External Control of Boot Process
* User and BIOS Scratch Registers

ZF-Logic ZFx86 Training Page 85

86

ZF-Logic Register Space Access (8-Bit)

IN/OUT 219H
Transfer 8-bit data

OUT 218H Set Pointer /
Index (Pointer) 1

86 Registers

—

}

8-Bit Data Pathway

Index | 8-Bit Data at Index

8-Bit Data at Index + 1

02

ZF-Logic Revision (LSB) -- (02H)

ZF- Logic Revision (MSB) -- (03H)

» ZF Logic is Controlled or Accessed through about 86 8-bit registers.

* Four ISA I/O Addresses are used provide Access to The Registers

QUEST

IONS:

11 Why do we have 86+ Registers in the ZF Logic?

al

2] Why do we use 4 (rather than 86+) ISA Addresses?

PROGRAMMERS: Write Code to Read Revision into CX register (asm) or

16-bit unsigned int (C)

[]

ZF-Logic

Check Your Answers on page 117.

ZFx86 Training Page 86

87

ZF-Logic Register Space Access (16, 32-Bit)

86 Registers
OUT 218H Set Pointer
Index (Pointer)

IN/OUT 219H
Transfer 8-bit data

8-Bit Data Pathway =

IN/OUT 21AH
Transfer 16,32-bit data

16,32-Bit Data Pathway

8-Bit Data at Index 8-Bit Data at Index + 1 ‘

Index

02 I ZF-Logic Revision (LSB) -- (02H) ZF- Logic Revision (MSB) -- (03H) I

» ZF Logic is Controlled or Accessed through about 86 8-bit registers.
* Many of these registers are logically 16 or 32-bits wide

* By setting 218H to put to a 16 or 32-bit base, 2 or 4 consecutive bytes
from the ZF register space can be transferred with a single IN or OUT
(or C inp or outp) instruction.

Example: Read the 16-Bit Data at Index 02 to pick up the ZF-Logic Revision:

nmov al , 02h ;I ndex
nov dx, 218h ; I ndex Address
out dx, al ; Set | ndex
; read the val ue
nmov dx, 21Ah ; Data Viewport
in ax, dx ; AX=1234H (current revision of ZF-Logic)

ZF-Logic ZFx86 Training Page 87

88

ZF-Logic Registers

Index | 8-Bit Data at Index 8-Bit Data at Index + 1
02 ZF-Logic Revision (LSB) -- (02H) ZF- Logic Revision (MSB) -- (03H)
04 PWM Prescaler Low Byte -- (04H) PWM Prescaler High Byte - (05H) A
06 PWM duty cycle -- (06H) §
08 PWM 1/O Control -- (08H) ;
0A PWM Read Output -- (0AH)
0oC Watchdog 1 Count Low Byte -- Watchdog 1 Count High Byte -- (ODH) A
(OCH)
Q

0E Watchdog 2 Count Value -- (0EH) Watchdog Reset Pulse Length -- =

(OFH) v
10 Watchdog Control Low -- (10H) Watchdog Control High -- (11H)
12 Watchdog Events -- (12H)
14 1/0 Window 0 Base Low (14H) I/0 Window 0 Base High (15H)
16 1/0 Window 0 Control (16H) i
18 /0 Window 1 Base Low (18H) 1/0 Window 1 Base High (19H) '§
1A 1/0 Window 1 Control (1AH) C;)
1C 1/0 Window 2 Base Low (1CH) 1/0 Window 2 Base High (1DH) =
1E 1/0 Window 2 Control (1EH) +
20 1/0 Window 3 Base Low (20H) 1/0 Window 3 Base High (21H)
22 1/0 Window 3 Control (22EH)
24

ZF-Logic

ZFx86 Training Page 88

89

ZF-Logic Registers (2/3)

26 Memory Window 0 Base Bits 7-0 MWO0 Base 15-12 MWO Base 11-8
28 Memory Window 0 Base Bits 23-16 Memory Window 0 Base Bits 31-24
2A Memory Window 0 Size Bits 7-0 MWO Size 15-12 MWO Size 11-8
2C Memory Window 0 Size Bits 23-16 Memory Window 0 Size Bits 31-24
2E Memory Window 0 Page Bits 7-0 MWO0 Page 15-12 MWO0 Page 11-8
30 Memory Window 0 Page Bits 23-16 Memory Window 0 Page Bits 31-24
32 Memory Window 1 Base Bits 7-0 MW1 Base 15-12 MW1 Base 11-8
34 Memory Window 1 Base Bits 23-16 Memory Window 1 Base Bits 31-24
36 Memory Window 1 Size Bits 7-0 MW1 Size 15-12 MW1 Size 11-8
38 Memory Window 1 Size Bits 23-16 Memory Window 1 Size Bits 31-24
3A Memory Window 1 Page Bits 7-0 MW1 Page 15-12 MW1 Page 11-8
3C Memory Window 1 Page Bits 23-16 Memory Window 1 Page Bits 31-24
3E Memory Window 2 Base Bits 7-0 MW2 Base 15-12 MW2 Base 11-8
40 Memory Window 2 Base Bits 23-16 Memory Window 2 Base Bits 31-24
42 Memory Window 2 Size Bits 7-0 MW?2 Size 15-12 MW?2 Size 11-8
44 Memory Window 2 Size Bits 23-16 Memory Window 2 Size Bits 31-24
46 Memory Window 2 Page Bits 7-0 MW2 Page 15-12 MW2 Page 11-8
48 Memory Window 2 Page Bits 23-16 Memory Window 2 Page Bits 31-24
4A Memory Window 3 Base Bits 7-0 MW3 Base 15-12 MW3 Base 11-8
4C Memory Window 3 Base Bits 23-16 Memory Window 3 Base Bits 31-24
4E Memory Window 3 Size Bits 7-0 MW3 Size 15-12 MW3 Size 11-8
50 Memory Window 3 Size Bits 23-16 Memory Window 3 Size Bits 31-24
52 Memory Window 3 Page Bits 7-0 MW3 Page 15-12 MW3 Page 11-8
54 Memory Window 3 Page Bits 23-16 Memory Window 3 Page Bits 31-24

Memory Window

ZF-Logic

ZFx86 Training Page 89

90

ZF-Logic Registers (3/3)

56 BUR Base Low (57H)
58 BUR Base High (58H)
5A Memory Control Low (5AH) Memory Control High (5BH)
5C
5E Z-tag Data Write Register (5EH)
60 Z-tag Data Read Register (60H)
62 Bootstrap Bits 7-0 (62H) Bootstrap Bits 15-8 (63H)
64 Bootstrap Bits 23-16 (64H)
66 I/0+Memory Window Map Events

66H
68 Scratch Register 0 Low (68H) Scratch Register 0 High (69H) *
6A Scratch Register 1 Low (6AH) Scratch Register 1 High (6BH)
6C Scratch Register 2 Low (6CH) Scratch Register 2 High (6CH) é
6E Scratch Register 3 Low (6EH) Scratch Register 3 High (6FH) EJ)
70 Scratch Register 4 Low (70H) Scratch Register 4 High (70H) %
72 Scratch Register 5 Low (72H) Scratch Register 5 High (73H) g
74 Scratch Register 6 Low (74H) Scratch Register 6 High (75H) +
76 Scratch Register 7 Low (76H) Scratch Register 7 High (77H)
78 Scratch Register 8 Low (78H) Scratch Register 8 High (79H)
7A Scratch Register 9 Low (7AH) Scratch Register 9 High (7BH)
7C Z-tag control register (7CH) Z-tag Sequencer Divisor Register

(7DH)

7E Z-tag Sequencer Waveform (7EH) Z-tag Sequencer Strobe Points (7FH)
80 Z-tag Sequencer Data (80H) Z-tag Sequencer Status (81H)

ZF-Logic

ZFx86 Training Page 90

ISA Memory Windows for Flash / SRAM

ISA Memory Mapper | Mem_cs”

Memory Mapper Pins

Translated ISA PKG |Name Description
Address -
B04 |Mem_cs0 |ZF-Logic Memory Mapper CS
0
ISA Address
—> Address ISAAﬂo D05 |Mem_cs1 |ZF-Logic Memory Mapper CS
MUX ISA Address 1

A03 [Mem_cs2 |ZF-Logic Memory Mapper CS

16 MB

Window

Size Window Page +
Base

Window
if Page = -Base

Base
Address External Address

Space (Flash, etc.)

Generally, the ISA address which comes from
the internal ISA address bus is propagated
out to the external ISA address bus. How-

0 MB \ ever, if a mem_cs is active, because the
address falls in the left window range (base to
ISA Address Space base plus size), then a mem_cs is generated
and the translated ISA address is written out
to the physical address bus.

ZF-Logic ZFx86 Training Page 91

92

Benefits of Memory Window Mapping

The ZFL allows the ZFx86 to control up to four external memory
devices on the ISA bus. These devices can be mapped into the sys-
tem memory address space. Typically, this feature is used to map
external Flash memory into the address space without external
address decoding logic.

Each device can occupy up to 16 Megabytes (occupying all 24 ISA
address lines).

In DOS mode these windows can be up to 256K bytes and reside
only in upper 1 Mbyte DOS ROM area (CO000-FFFFF).

In protected mode the windows can occupy all 24 ISA address lines
(000000 - FFFFFF). This area is accessed in protected mode through
memory space above system SDRAM. If the address is not in the
system memory and no PCI device claims it then it is forwarded to the
ISA bus. This makes the ISA bus useful multiple times in the upper
memory area.

Memory can be 8 or 16 bits wide, and may be write protected.

note: This is Static RAM or Flash -- this is not the SDRAM Controller
memory.

Memory Control Low -- Index 5AH

Bit

7 6 5 4 3 2 1 0

Function| w3 ro | w2 ro | wliro | w0 ro | w3 8 w2 8 w1 8 w0 8

Default 0 0 0 0 0 0 0 0
R/IW R/W R/W R/W R/W R/W R/W R/W R/W
Bit Name Function
Window n Read-write Control
74 |wn_ro 0: Window N |s Read-write
1: Window N Is Read-only
Window n Data Bus Width
3:0 \wn_8 0: Window N Uses 16-bit Data Access
1: Window N Uses 8-bit Data Access

ZF-Logic ZFx86 Training Page 92

93

Safety Aspects of Memory Windows

* Programmer/OS can request interrupts on Memory Window Overlap,

Memory Change.

* Memory can be 8 or 16 bits wide, and may be write protected.

» Design ldea: Part of a Flash can be Write Protected by using two

mem_cs* signals - one set R/W and one set R/O.

note: in case of overlapping addresses, mem_cs will not be asserted. The effect of the

Events register is to cause notification via interrupt of this problem.

1/0 and Memory Window Mapper Events -- Index 66H

lap

1: Enable event on memory overlap

Bit 7 6 5 4 3 2 1 0
Memory 110
Function Reserved Event Type Memory o Window | Window
Overlap | Overlap Change | Change
Default 0 0 0 0 0 0
R/W R/O R/W R/W R/W R/W R/W
Bit Name Function
7:6 |Reserved
Generated event type
00 - No event
5:4 |Event Type 01- SCI
10 - NMI
11 - SMI
Enable resolve event on memory overlap
Memory Over- | = .
3 0: Disable event on memory overlap

2 I/O Overlap

Enable event on 1/0O window overlap
0: Disable event on 1/0O window overlap
1: Enable event on I/O window overlap

Enable event on memory window change

1 Memory 0: disable event
Access)
1: enable event
Enable event on I/O window change
0 I/O Access 0: disable event
1: enable event
ZF-Logic ZFx86 Training Page 93

94

Memory Window Registers

1. First window settings
o« 2CH-2BH: Mem_cs0 window size
» 30H-2FH: Mem_cs0 page
e« 28H-27H: Mem_csO base address

2. Second window settings

e 38H-37H: Mem_cs1 window size
« 3CH-3BH: Mem_cs1 page
 34H-33H: Mem_cs1 base address

3. Third window settings

o 44H-43H: Mem_cs2 window size
* 48H-47H: Mem_cs2 page
 40H-3FH: Mem_cs2 base address

4. Fourth window settings

e 50H-4FH: Mem_cs3 window size
* 54H-53H: Mem_cs3 page
« 4CH-4BH: Mem_cs3 base address

5. 5BH-5AH: Control (R/W, 8/16 Width)
6. 66H: Events (SMI, etc.)

0 - FFF000 = 16 MB / OFFFFH
0 - FFF000 = 16 MB / 0
0 - FFFO00 = 16 MB / FOOO0H

Initialization
Special Use of Mem_cs0

All the windows settings are initial-
ized to 0 on power up reset. Set-
ting a window size to 0 disables
the window (the mem_cs®).

mem_cs0 is generally used for the
boot ROM (flash). Thus the first
window reset defaults are as
shown above.

Window Size, Base Address, Page
(translated address) all have a

range of 0-16 MB. The mapping is
disabled when window size is zero.

There are two 8-bit registers each for Window Size, Base and Page. In each case, the
two 8-bit registers supply bits 15-12 and bits 23-16 respectively. You may access these
registers as a 32-bit operand. For example, to reference Window 0 Page Size, do a 32-bit
transfer with the index set to 2EH (covering 2E-2F-30-31 hex).

|-— 8 bits 12 bits 12 bits ———— p»|

31 24|23 12|11 0
00H User Defined 00H

B 32 bits >

Fields in 32-bit memory settings registers

notes: SMI (System Management Interrupt) is used for legacy SMM BIOS; SCI (System Con-
trol Interrupt) is used for ACPI OS. Also, when determing whether or not an addresses emit-
ted by the processor should generate a mem_cs*, the upper 8-bits of the 32-bit memory
address are ignored. Thus a memory page can appear (alias) many times in the (CPU’s) 4

GB address space.

ZF-Logic

ZFx86 Training Page 94

ZF-Logic Memory Windows Review Questions

4] Looking at the ‘ZF-Logic Block Diagram’ on page 85, what is the difference
between the internal ISA bus and the output (on the lower right) called "ISA
Address"? What is the function of the address multiplexer shown in the
diagram, and when is the operative?

5] What are the necessary and sufficient conditions to cause a mem_CS sig-
nal to be asserted by the ZFx867 Even if these conditions are met, when
will a mem_cs signal not be asserted?

6] How many 32-bit ZF-Logic "memory window" registers are associated with
the four mem_cs signals? See ‘ZF-Logic Regqisters (3/3)’ on page 90.

7] List the benefits to the customer which accrue from the ZFx86 memory win-
dow mapping feature.

8] What is the benefit to the customer due to the fact that his operating sys-
tem may be notified based on memory window change? How this notifica-
tion occur? See "I/O and memory window mapper events -- index 66 hex"
on page 14.

9] What a special about mem_cs0? In order for that to work, what must hap-
pen?

[1 Check Your Answers on Page page 118.

ZF-Logic ZFx86 Training Page 95

96

GPCS 1/0 Mapper

GPCS Pins

PKG Name Description

I/O Mapper |—10-€s*, B03 io_cs0 | ZF-Logic /0 Mapper GPCS 0

A02 io_cs1 ZF-Logic 1/0 Mapper GPCS 1

A01 io_cs2 ZF-Logic I/0 Mapper GPCS 2

Cco3 io_cs3 ZF-Logic 1/0 Mapper GPCS 3

» ZFx86 has four GPCS (General Purpose Chip Select) signals
mapped to io_cs* pins.

» Each io_cs* signal is assigned an address (or a set of consecutive
addresses) in the ISA 1/0O space. This address, or set of consectutive
addresses, is called the "window".

» Benefits: Each I/O Chip, requiring 1 to 16 consecutive I/O addresses,
can be connected to the ZFx86 without glue logic.

* You can specify read-only or read-write, and 8 or 16-bit wide data
transfers.

» Benefit: if your 1/O chip is 8 or 16-bits wide, you do not need special
logic to inform the ZFx86 -- it is set up in the control registers.

» There is no address translation here: just appropriate io_cs* genera-
tion.

notes: For example, if the chip you wish to connect to the ZFx86 using one of the io_cs pins
has four ports (such as the old 8255 chip), you would want the chip select to be asserted for
four consecutive addresses. The chip itself would differentiate between the addresses by
looking at the low two bits of the ISA address bus

ZF-Logic ZFx86 Training Page 96

97

GPCS (I/0O Mapper) Register Set

1. GPCS 0 settings

* 15H-14H: io_cs0 base address
* 16H: io_cs0 control

2. GPCS 1 settings
* 19H-18H: io_cs0 base address
* 1AH: io_cs0 control

3. GPCS 2 settings
 1DH-1CH: io_cs0 base address

 1EH: io_cs0 control

4. GPCS 3 settings
e 21H-20H: io_cs0 base address
o 22H: io_cs0 control

0000 - FFFFH (CPU 1/0O Range)
RO/RW, 8/16 bit data, size, enable

5. Events Register (66H)Window Change, Overlap

» A chip select may be generated for any 1 to 16 consecutive
addresses in any part of the CPUs to 64K I/O address space. The
Intel architecture supports only 64K of I/O address space, so the 16-
bit base address provides precise and complete locating of the chip

select decode.

« Sufficient control information is required on a per chip-select basis, to
require one control byte for each 1/0O chip select.

* The same events register (66H) is used for the memory and I/O map-
ping. The same errors are detected.

ZF-Logic

ZFx86 Training Page 97

98

GPCS (1/0 Mapper) Control Registers

I/0 Window “N” Control

Bit 7 6 5 4 3 2 1 0
Function| win_ro | 16_bit | act_Ivl | win_en win_siz: I/O Window Size (1-16)
Default 0 0 0 0 0 (Sizeis 1)
R/W R/W R/W R/W R/W R/W

Bit Name Function

7 win_ro

I/0O window read/write control
0: Access is read-write
1: Access is read-only

Setting window to read-only mode disables IOW_N
signal on ISA bus for IO window address range.

I/0 window datapath width

6 16_bit 0: 8-bit wide access
1: 16-bit wide access
io_cs active level

5 act_|vl 0: io_cs is active low

1:io_cs is active high

4 win_en

I/0 window enable in I/O space
0: 1/0 window is disabled
1: 1/0 window is enabled

3:0

win_siz

Number of consecutive 8-bit I/O addresses to decode
starting from 1/0 window base.

The number of consecutive addresses decoded is
win_siz + 1. For example, setting the window size to 0
enables one I/O address at I/0O window base. Setting
size to OFh will enable /O window of 16 addresses
starting from 1/0 window base.

ZF-Logic

ZFx86 Training Page 98

Watchdog Timer

— NMI
| MUX —® SCI
—» SMI
——» RESET

» \WDO
WDA1 WD2
M» 16-bit counter 8-bit counter F——® RESET
2 sec. max 7.2 ms max

32 KHz f f

* Whenever WD1 is not reloaded during a pre programmed interval it
generates an event to notify the system of an error condition.

» The first watchdog timer is initialized to a 16-bit timeout value through
registers 0Ch and ODh. After enabling through control register (10h) it
starts the countdown to zero. The first watchdog timer can be
reloaded to an initial value by writing into control register (10h) or
asserting watchdog external control pin on ZFx86 (WDI).

* Whenever the first watchdog is not reloaded during the timeout value
it generates an event to notify the system of an error condition and
outputs the logical "1" to a watchdog output pin on ZFx86 (WDO). The
notification event can be routed to NMI, SMI, SCI or it can reset the
system immediately.

« The second watchdog timer 8-bit timeout value is initialized through
register OEh and starts counting down after WD1 time-out. When the
WD2 counterreacheszero,itwillunconditionally cause systemreset.

ZF-Logic ZFx86 Training Page 99

100

ZF-Logic Registers for the Watchdog Timer

oC Watchdog 1 Count Low Byte (0CH) | Watchdog 1 Count High Byte (0DH)
OE Watchdog 2 Count Value (OEH) Watchdog Reset Pulse Length (0OFH)
10 Watchdog Control Low (10H) Watchdog Control High (11H)

12 Watchdog Status (12H)

Count Registers - Reload Values for Watchdog Timers

Watchdog Reset Pulse Length - the number of 32kHz ticks to hold
the system reset signal low

Watchdog Control: Enable/Disable, and MUX Control

ZF-Logic ZFx86 Training Page 100

101

ZF-Logic Registers for the Watchdog Timer

Watchdog Control Low -- Index 10H

Bit 7 6 5 4 3 2 1 0
) wd?2 wd1 wd?2 wd1
Function reserved reserved
load load enable | enable
Default 0 0 0 0 0 0
R/W R/O R/W R/W R/O R/W R/W
Bit Name Function
7:6 Reserved
5 wd2 load Reload WD2 counter.
Active event for this bit is transition from O to 1
4 wd1 load Reload WD1 counter.
Active event for this bit is transition from 0O to 1
3:2 Reserved
Enable wd2
1 wd2 enable | 0: WD2 is disabled
1: WD2 is enabled
Enable wd1
0 wd1 enable | 0: WD1 is disabled
1: WD1 is enabled
ZF-Logic ZFx86 Training Page 101

102

ZF-Logic Registers for the Watchdog Timer

Watchdog Control High -- Index 11H

Bit 7 6 5 4 3 2 1 0
Function | reserved | wdi_en | wdo_-1 evggle r\g:;t gﬁﬂ Vl\\l/(lg/l1l \gg:
Default 0 0 0 0 0 0 0 0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
Bit Name Function
7 |Reserved
6 |wdi_en Enable the assertion of WDI input pin on ZFx86 to
to reload the watchdog 1 counter
0: WDI input ignored
1: WDI assertion reloads watchdog 1 counter
5 |wdo_-1 Create output on WDO output pin on ZFx86 at WD1
time-out or one 32kHz clock tick before
0: WDO signal will be set high on WD1 expiration
1: WDO signal is set high one clock tick before WD1
expires. WD1 events will always occur at WD1 time-out
and are not affected by wdo_-1 bit setting.
This feature permits automatic reload of WD1 when
WDO is wired to WDI.
4 |wdi edge Active front of WDI input
0: WDI is asserted on 0->1 transition
1: WDI is asserted on 1->0 transition
3 |wd1 reset WD1 generates system reset on time-out
0: WD1 will not generate system reset on time-out
1: WD1 will generate system reset on time-out
2 |wd1 SMiI WD1 generates SMI on time-out
0: wd1 will not generate SMI on time-out.
1: wd1 generates SMI on time-out
1 |(wd1 NMI WD1 generates NMI on time-out
0: wd1 will not generate NMI on time-out
1: wd1 generates NMI on time-out
0 |wd1 SCI WD1 generates SCI on time-out
0: wd1 will not generate SCI on time-out
1: wd1 generates SCI on time-out

ZF-Logic

ZFx86 Training Page 102

103| External Control of Watchdog Timeout

External
Square > NMI
Wave —» MUX —® SCI
—» SMI
————» RESET
WD#1 o L WD#2
WDI :
»— p| 16-bit counter count MUX 8-bit counter % RESET
2sec. max fome ™ 7.2 ms max
32 KHz * wd0-1 bit *
» \WDO
External
Logic
Level

» Square Wave on WDI may reset (external reset)

* Wiring WDO to WDI through Gate allows use of Logic Level rather
then Square Wave

* When wiring WDO to WDI, to prevent event (NMI, etc) (so long as
gate is on) then use wdo-1 to set reset of WD#1 1 event before expi-
ration

Notes: There is a WDO and WDI pin -- the WDI can be programmed to reload WD#1. If you toggle WDI (fall-
ing or rising) you can prevent the WD from ever expiring. The benefit of this is that so long as an external
square wave is coming in, the WD never expires. You are thus using an EXTERNAL way of keeping the
ZFx86 from resetting -- you are watching for an external “dead man” switch.

To do this, you need to have an outside event generator. Let’'s assume that all you have is a logic signal
which shows you if the external system is working or not. You can then connect WDO to WDI with an OR
gate or AND gate to that external signal.

If you set it up this way, then you set wdo-1 to generate event 1 pulse before expiring. If you did not do this, it
would expire. See wdo-1 in "Watchdog Control High -- Index 11H" on page 102

ZF-Logic ZFx86 Training Page 103

104 PWM Generator

PWM Out
32kHz/8MHz . .
— | 16-bit Prescaler——p»| 8-bit counter |——p»
Comparator >

16-PWM duty cycle value ‘

The PWM (Pulse Width Modulation) output may be used to create DC
control voltage for an LCD backlight or any other device that requires
this feature. The conversion is done by integrating variable duty cycle
signal externally. At higher frequencies it may be used to control
external transformer for DC/DC conversion.

PWM period defined by
registers 04h, 05h and 08h

¢ L

% from cycle to be LOW
defined by register 06h

ZF-Logic ZFx86 Training Page 104

105

PWM Generator Period / Duty Cycle

PWM period defined by
registers 04h, 05h and 08h

-t L

% from cycle to be LOW
defined by register 06h

ZF-Logic Index for the PWM Generator

04 PWM Prescaler Low Byte -- (04H) | PWM Prescaler High Byte - (05H)
06 PWM duty cycle -- (O6H)

08 PWM 1/O Control -- (08H)

0A PWM Read Output -- (OAH)

« PWM Prescaler: Divides 8MHz or 32kHz input clock selected at PWM
control register. Actual divisor is 16-bit PWM divisor word (combined
of registers 04h and 05h) + 1

« PWM Duty Cycle: Sets the % of the cycle to be low. (0 = 100%,

255 = 0%).
« PWM I/O Control: Includes selection of 32kHz clock or 8 MHz ISA
clock
ZF-Logic ZFx86 Training Page 105

106] PWM Generator - I/0O Control Register

PWM 1/0O Control -- Index 08H

Bit 7 6 5 4 3 2 1 0
. enable | direct slow- Enable
Function reserved . reserved fast
direct | output PWM
clksrc
Default 0 0 0 0 0 0
R/W R/O R/W R/W R/O R/W R/W
Bit Name Function
7:6 |Reserved

Enables direct control of PWM output by bit 4
5 enable direct 0: PWM drives the output
1: Bit 4 of register 08H drives the PWM output pin

4 direct output The value of PWM output when bit of register 08h is set to 1

3:2 |Reserved

Selects the PWM prescaler input clock
1 slow-fast (clksrc) |1: PWM is clocked by 32kHz clock
0: PWM is clocked by 8 MHz ISA clock

Enable/Disable | abie/Disable PWM output
0 oM 0: PWM is disabled
1: PWM is enabled

ZF-Logic ZFx86 Training Page 106

107| Boot Parameters Register

« When power-on reset is asserted 24 signals are read into the Boot
Parameters Register (configuration register) from the ISA Address
Bus.

* In a typical design, DIP switches or jumpers are used (with appropri-
ate resistors) set to the bits in the BootStrap Register.

ZF-Logic Index for the Boot Parameters Register

62 Bootstrap Bits 7-0 (62H) Bootstrap Bits 15-8 (63H)
64 Bootstrap Bits 23-16 (64H)
RP21 VCC3V
RPSMD4,2.2KX4 S1 Q
SAD 1 8 1 ~—] 16
NSRRI H ==
SA2 3 A 6 3 f——| 14
SA3 4 M 5 4 o | 13
SAT 1 EAA-8 5 | =0 |12
SA16 2 AL 6 | —— [11
i SA17 3 VA 6 7| —— |10
SA23 4 A 5 ZTAG EN 8 9
o o
RP23 218-8LPST <
RPSMD4,2.2KX4
Note: This schematic is a sample. Refer to ZF’s reference designs for
a "real world" DIP switch application.

The ISA address bus (pins SA0-SA23) is tri-stated during the reset pulse. It contains on-chip
weak (about 20K) pull-ups and pull-downs to set the default state of the bootstrap register. To
override this, we use a 2.2K pull-up or pull down and a DIP switch or jumper. Once the reset
pulse is done, the ISA bus has sufficient drive to overcome the effect of these 2.2K resistors.

Thus, conceptually the ISA address bus has three "modes": (1) the weak on-chip pull-ups/
pull-downs which are operative during the tri-state; (2) the 2.2K pull-ups/pull-downs which
may be activated via DIP switches; and (3) the normal execution time mode where the drive
of the ISA address bus will override these resistors.

Since the Boot Parameters Register is read only, the values sampled on the ISA bus on the
trailing edge of reset are "permanent” until the next hardware reset. Software can read the
data which is latched, but cannot change the data in the bootstrap registers.

ZF-Logic ZFx86 Training Page 107

108

Boot Parameters Register (Continued)

Internal ISA Bus

/|/System FDD Lines

FDD Lines
FDD MUX .
ZFx86 Internal Z-tag
Boot Up ROM -
(BUR) |IO/Mapper — .
CS
PWM PWM
wdi, wdo
ISA Interface Watchdog
to the ZFL NMI, SCI, SMI,
Register Set Drredet
Ports 218-21A | *
ISA Memory Mapper Mem_cs
Scratch
Registers
Bootstrap <Read 24-Bits on Reset
Registers

Address |ISA Address

MUX ISA Address

Example:

ZF-Logic Features

; read bootstrap registers as 32-bit value into EAX

0102
0104
0107
0108
010D

ZF-Logic

B0 62 mov
BA 0218 mov
EE out
BA 021A in
66| 25 O0FFFFFF and

al,62h
dx,ZFLINDEX
dx,al

eax,dx
eax,0FFFFFFh

ZFx86 Training Page 108

109

Boot Parameters Register (Continued)

RP21 VCC3V
RPSMD4,2.2KX4 s1 Q
—
SA1_2 7 2 15
‘/VV‘ —T
SA2_3 6 3 14
SAs 4 W TS il —— [13
SATT 1 W T & 5| == [12
VA m—— |
SAT6 2 | Apnt 7 6 | —0—— |11
SA17 3 AAA 6 7| — 10
SA23 4 [wanl 5 ZTAGEN g 9
RP23 218-8LPST N
RPSMD4,2.2KX4

ZTAG EN[__>——

Note: This schematic is a sample. Refer to ZF’s reference designs for

a "real world" DIP switch application.

Sample DIP Switch Settings

SwW Function

ON - USER DEFINED

ON - USER DEFINED

ON - USER DEFINED

ON - USER DEFINED

ON - EXT ROM when Z-tag enabled?

System Clock Speed

N|OoO| O[O N|—~

System Clock Speed

8

ON - Boot from BUR

a. This bit should NOT be used in real designs.
It is for testing only.

ISA BIT Index Bit Name Default Function

23 64H 7 Boot from BUR 0 Boot from BUR
(sometimes 1 = Boot from BUR
called 0 = Boot from Flash
ZTAG_EN)

When you plug the dongle in, it automatically sets BS23.

ZF-Logic

ZFx86 Training Page 109

110

Boot Parameters Register (Continued)

Composite BootStrap Register Map

ISA Index Bit Name Def | Function

BIT

0-3 62H 0-3 User Defined 0 |User Defined

5 62H 5 14 Mhz clock 0 |14MHz Clock Source

source If 1, derive from 48Mhz.
If 0, use mhz14_c pin. [AF16]

6 62H 6 32 KHz 0 |32KHz Clock Source
If 1, derive for 48MHz.

If 0, use 32KHZC [AF01]

9 63H 1 3" PCI Request 0 | Third PCI Request/Grant
1=drg1=req2_nanddack1_n=
gnt2_n

11 63H 3 Reserved 1 Internal / External BUR Source.
0 = External BUR
1 = Internal BUR

12 63H 4 ISA Boot ROM 1 | ISA Boot ROM Width

Width 0 = 16 bit
1 = 8 bit

16 64H 0,1 486 Clk Multiply 11 |00 - Sys Clk * 1

17 01-SysClk * 2
11 - Sys CIk * 3 (default)

10 - Sys Clk * 4

18 64H 2 FPCI divide 0 |Frontside PCI Clock Divide.
0- SysClk
1-SysClk/ 2...

19 64H |3 BPCI divide 0 | Backside PCI Clock Divide.?
0- SysClk
1-SysClk/ 2..

20 64H |4 BPCI Select 1 |Backside PCI Clock Select.?
0 - External clock.

1- Internal clock.
23 64H 7 Z-tag enable 0 |Causes BUR Boot. Enables the

Z-Tag Interface and BUR if high.

a. IfBit 20 is 1, then Bit 19 has no affect.

ZF-Logic

ZFx86 Training Page 110

Boot Parameters and Clocking

111

Full Clocking Diagram

33/66 MHzclk | SYS CLK
32KHz clk RTC
Cli /1484 |MuXIE—{@Niux— GPIOL0]
48MHz clk 32345
USB CLK

Clk/4 = 12MHz|__
— » Mux2 —— O.Mux — GPIO[4]

14MHz clk
14.318MHz
BS[6] BS[3] 10C[22] 10C2[7]
ISA Index Bit Name Def | Function
BIT
5 62H 5 14 Mhz clock 0 |14MHz Clock Source
source If 1, derive from 48Mhz.
If 0, use mhz14_c pin. [AF16]
6 62H 6 32 KHz 0 |32KHz Clock Source
If 1, derive for 48MHz.
If 0, use 32KHZC [AF01]

NOTES: The ZFx86 System-on-a-Chip has various clocking options. These options represent different trade-
offs that the designer must investigate to come to the best solution for the application being considered. Essen-

tially, the chip can be clocked using as many as four sources or as few as one.

ZF-Logic

ZFx86 Training Page 111

112

Clocking Choices (1)

ZF-Logic

32KHz clk » RTC
Mux o Mux
48MHz clk USB CLK
33/66 MHz clk | SYS CLK
—» Mux2 —O.Mux —
14MHz clk
14.318MHz
BS[6] BS[3] 10C[22] 10C2[7]

ZFx86 Training Page 112

113

Clocking Choices (2)

 LIMITED OPTIONS ON DRAM AND CPU CLOCK.

32KHz clk

»

48MHz clk

RTC

"o Nux > GPIO[0]

14MHz clk

USB CLK/ SYS CLK
. Mux2 —— O.Mux — GPIO[4]

ZF-Logic

14MHz

BS[5]

10C[22] 10C2[7]

ZFx86 Training Page 113

114

Clocking Choices (3)

ZF-Logic

 LIMITED OPTIONS ON DRAM AND CPU CLOCK,

ISA CLOCKING OFF.
32KHz clk RTC
48MHz clk

Clk/4 = 12MHz|

‘ O Mux-— GPIO[0]

» USB CLK/ SYS CLK

Mux 2 —— O.Mux — GPIO[4]

BS[5] I10C[22] I0C2[7]

ZFx86 Training Page 114

Clocking Choices (4)

115

* Simplest clock choice: Lose RTC on Power
down, incur error in time, and ISA timing.

’—v RTC

Clk /1484
> OMux —
48MHz clk 32345 ‘

Clk/4

BS[6] BS[3] 10C[22] 10C2[7]

ZF-Logic ZFx86 Training Page 115

GPIO[0]

=12MHz| he s o Mux GPIO[4]

116 Clocking Summary

Performance

* What 1s the best clocking for the customer?

Application Key Clock
Kiosc SYSCLK @ 66,
CPU 2X, PCI1 /2
Taxi SYSCLK @ 48
CPU 2X, 32KHZ
POS SYSCLK @ 48, CPU
2X, 32KHz
Agriculture SYSCLK 48 ONLY

ZF-Logic ZFx86 Training Page 116

1]

Answers to Questions

<page 86>

Why do we have 86+ Registers in the ZF Logic?

The actual address range of the ZF-Logic registers is index 2 through 81H, or
about 128 byte addresses. Of these, approximately 86 off the byte addresses
have read/write data fields. We need this many registers to contain all of the
control and status bits for all of the functions built into the ZF-Logic.

Why do we use 3 (rather than 86+) ISA Addresses?

The industry standard architecture, a derivative of the first IBM personal com-
puter, has many assigned and reserved addresses within the I/O address
space. In order to have a minimum profile, we access all of the ZFL control
logic registers using three and only three ISA 1/0 addresses.

PROGRAMMERS: Write Code to Read Revision into CX register (asm) or 16-
bit unsigned int (C)

mov al, 02h . I ndex uchar ucLow, ucHigh;
nmov dx,218h ; Index Address unsigned int uiRevision;
out dx, al : Set |ndex #define INDEX 0x218
: read the val ue #define TRANSFER 0x219
nmov dx, 21Ah ; Data Viewport #define REVISION _LSB 2
in ax, dx : AX=1234H #define REVISION_MSB 3
; this solution cheats and uses a 16- //solve using 8-bit transfers
bit transfer that we have not covered
yet . outp (INDEX, REVISION_LSB);

ucLow = inp (TRANSFER);

outp (INDEX, REVISION_MSB);
ucHigh = inp (TRANSFER);
uiRevision = ucHigh * 256 + ucLow;

// alternative using 16-bit transfer
#define TRANSFER1632 0x218

outp (INDEX, REVISION_LSB);
uiRevision = inpw (TRANSFER1632);

ZF-Logic ZFx86 Training Page 117 Answers to Questions

4]

<page 95>

Looking at the ‘ZF-Logic Block Diagram’ on page 85, what is the difference
between the internal ISA bus and the output (on the lower right) called "ISA
Address"? What is the function of the address multiplexer shown in the dia-
gram, and when is the operative?

Addresses on the internal ISA bus are generally routed to the output pins on the
ZFx86 whenever there are memory read, memory write, input read, and output
write, transfer cycles. That is, unless the ISA memory mapper grabs certain
memory read and memory write cycles, the addresses from those cycles propa-
gates directly out on the ISA address bus. However, if a memory address is in
the range specified by the base to base + size, then two things happen: (1) the
appropriate mem_cs is generated; and (2) the ISA memory mapper provides a
translated address and that is the address which goes out on the external ISA
address bus pins. Thus the function of the address multiplexer shown in the dia-
gram is to route to the external ISA address bus either (1) the ISA address from
the internal ISA bus, or (2) the translated ISA address from the ISA memory
mapper.

’I/System FDD Lines

Internal ISA Bus]

FDD Lines
FDD MUX
I
ZFx86 Internal Z-tag
Boot Up ROM .
(BUR) — 10/Mapper t———
CS
— PWM |—
ISA Interface | [atondog wdi, wdo
fo the ZFL NMI, SCI, SMI,
Register Set or reset

Ports 218-21A [)
ISA Memory Mapper Mem_cs

Scratch
Registers

Read 24-Bits on Reset

Bootstrap -l
Registers

Address |ISA Address
MUX ISA Address

ZF-Logic Features

ZF-Logic ZFx86 Training Page 118 Answers to Questions

5]

6]

8]

What are the necessary and sufficient conditions to cause a mem_CS signal to
be asserted by the ZFx867 Even if these conditions are met, when will a
mem_cs signal not be asserted?

In order to get one of the four mem_cs signals to be generated, a memory read
or memory write generated by the CPU must (1) reach the internal ISA bus, and
(2) be between the window base address and the window base+size.

Note that mem_cs signal not be asserted in the window size equals 0 (as it
turns off ISA memory mapping for that window), or if this memory window over-
laps another memory window. Review ISA Memory Windows for Flash / SRAM’

on page 91.

How many 32-bit ZF-Logic "memory window" registers are associated with the
four mem_cs signals? See ‘ZF-Logic Regqisters (3/3)’ on page 90.

There are 3 32-bit registers per memory window or a total of 12 32-bit registers.
These registers contained the base, size, and target offset (page). There are
other control registers (a control and an event register), but the basic window
mapping occurs using the 3 32-bit registers per window.

List the benefits to the customer which accrue from the ZFx86 memory window
mapping feature.

The first, and most important benefit, is that no extra hardware or glue logic is
required to in order to manage the chip selects for up to 4 SRAM or flash
devices. In addition, each device may be programmed to be read-write or read-
only. Further, without any extra external logic, a data bus width for each device
may be specified to be 8 or 16 bits. Besides that, there is an event register
which enables various interrupts to be received by the operating system based
on misuse of the memory mapping feature.

What is the benefit to the customer due to the fact that his operating system
may be notified based on memory window change? How this notification
occur? See 1/O and Memory Window Mapper Events -- Index 66H’ on page 93.

If an unauthorized program purposely or accidentally attempts to change the
size of a memory window it can represent a serious bug causing product
release and development delays (during development) or subsequent failures in
the field. Well behaved hardware will notify the the operating system via inter-
rupts if something happens which is not supposed happen. The ability of the
ZFx86 to notify the operating system via interrupts if someone tries to change
the memory window parameters, or if there is an inadvertent overlap of the
memory windows, enhances system integrity.

ZF-Logic ZFx86 Training Page 119 Answers to Questions

9] What is special about mem_cs0? In order for that to work, what must happen?

a] When the CPU powers up, it does an instruction fetch from 000FFFFOH, which
in all Intel x86 computers is routed to the last 16 bytes of the boot ROM. In
ZFx86 designs, we connect mem_csO0 to the flash chip containing the boot
code. The ZFx86 chip, on power-up reset, initializes 3 32-bit registers for
mem_cs0 such that this instruction fetch will read from a flash device.

As a technical note: The window size is set to 64 K, and the base address to
FOO00O0 (the last 64K of the 1MB of "real" memory), and the page to 0. This
means that instruction fetches in the top 64K of the 1MB real address space will
read from the first 64K of the flash chip.

1. First window settings

e 2CH-2BH: Mem_cs0 window size 0 - FFFO00 =16 MB / OFFFFH
* 30H-2FH: Mem_cs0 page 0-FFFO0O0=16MB /0
« 28H-27H: Mem_csO base address 0-FFFO00 =16 MB / FOOOOH

ZF-Logic ZFx86 Training Page 120 Answers to Questions

121

ZFx86 Training Book

Chapter 6 - Z-tag and BUR

Z-tag and BUR ZFx86 Training Page 121 12/4/01

122 ZFx86 Block Diagram

I S ———————

| Super I/0

| Floppy Disk PS/2 Mouse
Z-tag Z-tag)

- Parallel Port Real-Time Clk

Interface | | Controller 2 Serial Ports 2C Bus

I
JTAG - aest Mode AT Keyboard

Boundary Scan

ISA Bus ?

ZF-Logic

I

I

I

: ZF-Logic Register Set

| ZF Fail-Safe Programmable Z-tag interface

| Boot ROM Programmable PWM Generator
[ISA Memory Mapper for Flash/SRAM |
I

I

I

I

I

I

LZKRBO()ISAt ISA 1/O Mapper
p :
(BUR) Bootstrap Control Register

Dual Watchdog Timer
User/BIOS Scratch Registers

Z-tag and BUR ZFx86 Training Page 122

123 Using The Z-Tag Manager

.i_"'ji" tag Manmeger - Mew 2-taig Tnaige - default foe save is 2tag_iredg.bin _dn]ﬁl
Pl Edt Yiew Commands Toodks Help
Z-ag Comlants - 1 ilams Hew Command Templales:
Id Homwe Yer CRC Daace Timi: I HKume Wer CRC Dats T3
01 Toplead & Execute <oda GO0l Q@00 Z0R0I0Z1E 1&1: | ST 1
1
OZ B4 1 14
WERNCR by et T A 1
. : Ad 1
Fail-Safe BUR -
FE F : 1
1 LI |
Z-tag Interface 7 s L
Saved
Id R A -~ T
Dongle ZTAG DONGLE .
ol Ex L1an 1%
4 Ce Wk 1
o e \BET 1
o3 "1 — LET 1%
2 Ce 3 Lix2T 1%
[F ’ -. ﬁ \BET LS
0 8x ZZg 1t
D5 Bx 228 1:

Drestingtan Deibagd Chap Danghs
™ Zhag Dange « ' { Starderd = C~ EETE
i ﬂmﬂthp ' ¥ Shp-eﬂ’asl qunr_m--
 BssThwough || © || & z-18am
tead | o R — New Foldes |
- Aocessing LFT post &t addesss 3TEh Command 5aving 08

Improves speed over using serial interface.
Frees legacy ports from system FLASH update function
Creates a dedicated and simple interface for system upgrad-

INg.
Advantages
. Always Present . Initial BIOS Load
. Fast . Manufacturing Test
. Up to 1.5 Mbits/S . Diagnostics
. Simple to use . Remote Console
. Automatic . BIOS Updates
. Easy Configuration . Application Patches

Z-tag and BUR ZFx86 Training Page 123 Overview

124 The Z-tag Dongle

Small size

* 14 Pins: 7x2 Dual Row Header
» Use Surface Mount or Through-Hole technology

Placement

* Anywhere on your board that is convenient

* Ideally at board’s edge
If access is possible by means of a door or panel, use is simplified

p ey ®YEN

NOTE: Shared pins with floppy interface to eliminate the use of additional pins on the ZFx86

/lgystem FDD Lines

FDD Lines_

FDD MUX

Z-tag

Z-tag and BUR ZFx86 Training Page 124

125] The Ztag Dongle (Continued)

Simple inexpensive device.

Facilitates field upgrades

Can store up to 512KB of data
Provides positive feedback to operator

“Memory” Dongle
2 SEEPROMS 256
KBytes

2 Jumpers

Normal / PassThrough
Write Protect

2 LEDs
Program

“PassThrough” Dongle
No onboard memory

No jumpers
Fast data transfer
3 LEDs

Power

Busy
Status

Z-tag and BUR ZFx86 Training Page 125

126 | Normal vs. PassThrough Download Mode

1. Load Doago Vi
% PASE THROAGH EEEFROM using
MOOE: The Kiode - . Floes Prmier Frort
g in el 0 29 4

Fais-Thigh A
prirvas Catda from
it sl Ligeg Th
Dongls pr & Fass-

o

-' | SATE

Thmugh sispier
o Dongla Hasedar

Thaa Seriaal Pail
':':,;Lﬁ:‘é;ﬁ,m My ta wmed with
B e ZFiN Donsola
5'-'?-'-"""-’?":' Commpnds b
ooyt o s s, BB
kanti Miia HOST wigsh b

. 2 BUR Pk =
syl of tha EEEFROM | _— —
fFi
ZF«dE | | | | I | | [— .il.":'lﬁ-ﬁ
ALK rid] Dl e ol deria
presisad by Lhe Hos Dongle Haeadas . 1
N PESTOITD |0 OLK i - | Seid For 1 e o |
‘ inleriacn Fantwan |
Floppy / I:Tog A w) Floopy Coniobor |
7| imisace Mardware ¥ I-Tmg
-

ROITE - Do e 1-& Biprmal MODE : This is p bem-siep operadion- [1), The Dongles in plugped
Famian| tha 2F <86 v g bt P b ol the Diangle SEEPRIORM. (35 T Dongle is pugged o
Rt s 154 addiicd T ZFaBE bowidl Tha BUR sads the Dosge SEEPROM. CLE and &CK RV
0l 23 (2 ia Boosrap dvnc ponnaol Daia oeras om o on- Dongles SEEPRTHM B
BAZE. WH s psbed
figh, the BLE & 1. Dionegle afached i Host, e the -t Mamager Windows appbcorson o
smerasied, E b, bood 1§ crrwriond cymmansdy and oods meges i Be Dongle SEEPFROK FLAEH Mamory
T o] e bl i
mamody (FLASS 2. Donght B attached o ader pins. On rasoi the BUR will read commands

#rom the Dongie SEEFPRCAM . Thess oommands car include an FLASH image
&% A daly packs | W ih the MODE jumper n e nomel mode, s CLKE
kil Tz (he 2F 86 18 doectly Ted bk & Ba 2FaB8 ne Be S0E aigrisl
alurading eiadstie & psad ok

PassThrough MODE: Host Connected to Target system
directly (using the PassThrough dongle and a printer
cable)

Normal MODE: Load the Memory Dongle using the Host sys-
tem, and carry the Memory Dongle to the Target system

Z-tag and BUR ZFx86 Training Page 126

127 The Z-tag Manager Interface
MS Windows Application

Used to load the Dongle with Data

Simple instructions / Powerful results

Only 7 standard commands

Create your own commands to add special purpose func-

tionality

Zij7 tog Manager - New Z-tag Inage - default for save is Ztag_img.bin |3 =]

Fl= Edt Yiew Commaneds Tooks Help

L4ag Conbenls - 1 ilams Hew Command Tesplales:

Id Hame ¥Yar CRC Dace Timé: Id Foame Ver CRC Date Tz

01 Tplead & Bxacubs cods OOl O@D0 ZODOZ1&E 1&13 [l He e iz 001 0000 13531210
FE Parasatar Dalipimie
FFE Nmarkst
Fil FLE CoEpresse

U Saved Z-taqg Command D efinftions - § items

Id Kams Var CRC Data T4
01 Execurce {ouc 80k, L1234k} 0100 D307 195311010 17
4 Can. omd “HEROE™ Q100 4F4Z 19531101 17
0f Conmole o ML D100 G000 1BERL0ET 1
03 "inb =0° 0100 4530 1953L0ET 1
2 Camsole ce KN 0100 L2l 12531027 1
01 “inb WE° 0100 GHDF LBERLOET 1
00 Bvars console 0lo0 Q000 ZODO0ZZE 1
05 Srap afecuring 0100 Q00 ZO000022s 18

[Destington Do Chag Donghs

™ Ztag Dongle r i " Standard = EETE

™ Onboard chip & i+ Syperfast [PROGRA™

@ EsesTheough o o TTAGM™1

tead | . BT
#ccessrg LPFT post &t adde=ss 3TER Commard Savirg 0F.

Z-tag and BUR ZFx86 Training Page 127

128

Z-tag Manager Commands

. Dongle Related

01 - Upload and Execute
Code

« 05-Stop

* FF - (Transport Container
"Basket" for Data)

.E'_j.t-t-:q Fanager - Mew 2-tag Image - defaulkt for save is zbag_imgkin E -|I:I|ﬁ|

Fiz Edit Yiew Commards Tooks BMep

Z-tag Conterts - 1 fems Mew Commard Templates:
Td Hame Var CRE [ace Timi Td Hame Ver GCRE Date Tid
=T | 10GIE & L 00 Start EFix Coneols DOGl O000 1L¥8S1LT10 1<
al Uplosnd & Fxscuts cods DDl 0000 So0001d L
UL Sslsckt Tsraml Dewics DNl OUun LIISLEL0 L4
03 Bzec Conscle Comd Line OO0l SCER ZO0OOL14 L3

Diestination ~Onboard Chip ~Dongle
™ £Hag Dongle £ ATTRNE (Gardand
1 Onboard chip @ ATI7LVTIO # Suparlas

i+ PaThiough A

flead wiite |
Arcessing LPT ponl ot sddiess 378

. Console Related

00-Start/Resume
BUR Console

02 - Serial Console Mode
(toggle)

03 - Execute Console Com-
mand Line

04 - Add Command to Con-
sole

05 Brap

0d Add Ceommarnd eo Conseola 0100 4F43 Z0000L14 L1

FE Parsseter Dafindicion O3l 0000 Z00O0EZE LE
FF Bashar 00l 0000 17931210 1«
F BLE Compressed Basharc 001 0000 Zo0o0wll 1€

Saved £ tag Command Delindtions - 8 ems

PE o i@ ing D00l D000 17831210 L&

Id Hema Tar COIC Dete T4
01l HBracura [ewe B0h,1Z34h) 0100 L3IDLT 12531101 17
04 Con, e=md “HIHOE™ Q10D 4F43 12831101 1%
02 Consola we KL Q100 0000 12931027 1<
03 "ink =0" Q10D 450 12R310ZT LI
02 Console o AME 010 1021 17931027 1€
03 "ink 22" Q10D S30F L2IFLOET LI
@0 FEaTt Console D100 O0O0 ZONoOIZR LE
0F Ffoop sxequsing D100 Q000 ZOODODZIE LE
[EL [=cn =]
[= FROGRA™

S Z-TAGH1

_ Mo Fokder

| Corrmand S aving OF,

Z-tag and BUR ZFx86 Training Page 128

129} Z-tag “Memory” Dongle Programming

irvati Onboard Chip—— r Dongle————
Ztag Dongle £ ATT7LYE]2 & Standard
= AT17LVO0 { Super-fast
A I I

[EassT hraugh

Bead Write

Selected Device is Z-tag

Z-tag and BUR ZFx86 Training Page 129

130 Z-Tag “PassThrough” Dongle Programming

= AT7L000
ATTVLLYOED

Destination—— | [Onboard Chip————
" Z-tag Dongle) AT17LYE]2
ol ;

% PassThrough

Read Wwrite

\Super-fast dongle selected [

Z-tag and BUR ZFx86 Training Page 130

131} Put the BIOS in Dongle - First Get Flash Program

Use the “Upload & Execute Code command:

f_l' #-taq “lanager - Mew 2-tag Image - default for save & ztag_imgbim ~ |I:I|£|
Z-lag Conlentz - 1 ibemz Mew Commard Templales:

Id MNams Ver CRC Dace Timi- [d Hams Yar CREC Dats Ta

[i 00 Starc £Fiz ComEols amal Goo0 ipFeiiio i<
Ok Opload 4 Fxeowts oode QL onon ZONDEES LE
02 Select Zarial Device QQL onon 12%RLZL0 14
02 Ewec Comsole Ced Lime Q0L *CEA ZO0DD1LEd 1
04 Add Commakid to Congole 0100 4F43 20000114 11

DE Zvop Processing 000l ODOD 1253L1Z10 14
FE Parasstat Delinicicsm Q0L ODOD ZO)OSZE LE
PF Baskat 000l 0000 1359lZl0 14

PO PLE Ceapradisad Baakae Q0L o000 200009L1 1£
Saved Z-tag Command Definstions - B items

Id Hami Yer CRC Date I3
0L Esacuta (ous S0 1234h) OL00 [EET 19531101 1%
0d Camn. emd "XEHOW® o100 4F43 19591101 17
02 Commols 2o HUL QLo Goon 159%alnET 1f
03 *imb 80" QLO0 4950 19%aL0X7 Lf
0F Commole o AR aLan LoEL LeesLaz7? L
03 "imb BI" QL0 &F0F LPFRPLOZT LI
00 Snarc consnle Q100 onon ZOMNDEIR LE
0E Snop eEeOaning Q100 onon ZOMQDZIR 1£

Dhecsbinalion Orbaaid Chip [romla

thgl:hr-ji r AT17LVES ™ Slandad = G\ =y =]

-I"' uf":ﬂdd'.:l F 1N I+ Sﬂ'fﬂt Emuumﬂ--l

= PassThwouch AT = Z TG

B wite | _ Hovw Fokder
Accessimg LPT poit st sddress 378 |D:|'rmr.l1-|:| Saving DK

Z-tag and BUR ZFx86 Training Page 131

132

Editing Command 01 - Upload & Execute Code

Z-tag Manager Command Editing Form |

— Command Header

Command: II]1 "v"ersicun:luum Date.-"Time:IzuuuumE I-”E"B Setto N':"::I

By default Dates/Time iz zet to command body-fle's datetinme

Drezcription:

IUpIuad & Execute code

— Command PayLoad
Command's Binary Body File:

Thiz command has no body

Chooze uploadable code file at box above. ..

Erowse J..

Z-tag and BUR

LCancel
Browse

Open __________ HEH|
Loak i IﬁE-tag b anager j El
"1 ClipBrd] _isreq32.dIl [AZTAGMan.cnt
“1Dongle '#| DelsL1.isu l#] ZTAGMan.FTS
C1 DriverLINX DLPORTIO.dII 2| Ztagman.GID
1 NewCommands DLPORTIO.sys & Ztagman.hlp
[C1Saved Siflashpgm.rom i ztagwin.exe
l#] deisreg.isr l#] ztag_img.bin

4| | |
File narme: Iflashpgm.mm Open I
Filez of type: I,-’:-.II files j Cancel |

ZFx86 Training Page 132

133

Edit Selection of Flash Code, Add BIOS Basket

Z-tag Manager Command Editing Form |

— Command Header

Eu:ummand:ersiu:un: 0001 I:flate.-"TimE:Izl:"]["]z“3 |1?45 Setto Nﬂd

By default Dates/Time iz zet to command body-fle's datetinme

Descriptiur‘ iE“ECUtE Flash Program) C h an g ed th e nName

of command 01

— Command PayLoad
Command's Binary Body File:

C:\Program Files\”-tag Manager\flashpgm.rom Browsze | SpeCIerd the flle
Choose uploadable code file at box above. .. Wh |Ch Conta|ns the

code to program
the Flash

Apply LCancel

ﬁE-tag Manager - Hew Z-t7 g Image
File Edit “iew Z-tag Comglandz Help

Z-tag Contents - 2 items ' Hew Command Templates:
Id HName Wer CRC Wer

(|01 Execute Flash Program) e et Fi ool
ugol o000 199917 01 Tpload & Execute code ool

eled ErLlal Device ool

Z-tag Manager Command Editing Form |

— Command Header

Command: FF Yergion: 0001 Date.-"Time:Izuuuu'“B IDHEE Setto N':"::I

By default Dates/Time iz zet to command body-fle's datetinme

Desu:rip!u:un: IBE'SkE=t - ROM Alpha 3

— Command PayLoad

PY EBASEer

Command's Binary Body File:
IF:"\DD-::ETHL"\BIDS Releases\MachZBI05\Alpha9\machz.ab | | Browse |

Bazket, a Binary Payload Container. Choosze payload above. ..

Now add basket containing the
rom image to be programmed

Bead Z-tag

PazsThrough

Apply | LCancel

—_—

Z-tag and BUR ZFx86 Training Page 133

134} Add The Stop Command, Create A “Save” Folder

jZ—tag Manager - C:Documents and Settings', CSherman.2ZFMICROY My Do - |EI|5|

File Edit Wiew Commands Tools Help

Z-tag Contents - 3 items Hew Command Templates:
Id Haune= Wer CRC Date Time Id MName Wer CRC Date T3
01 Upload & Execute code 000l 0000 Z0000Z1é& 161 00 Start EFix Console 000l 0000 19931210 1<

FF Basket Q001 Q000 19991210 145 01 Upload & Execute code 0001 0000 Z0000Z21& 1€

2 0001 0000 19931210 145 0 Select Serial Dewvice 0001 0000 19393110 1<
032 Exec Console Cmd Line ooo0l 2CEA Z0O00114 1:
04 Add Command to Console 0100 4F43 Z000011l4 11

0F Stop Processing 000l 0000 19991210 1¢<
FE Parameter Definition 0001 0000 ZO00005Z25 1%
FF Easket 0001 0000 19331210 1¢

FO RBLE Compressed Bashket 000l Qo000 Z0000211 1¢

Saved Z-tag Command Definitions - 8 items

Id HName Wer CRC Date T3
01 Execute {(out S0h,l1234h) 0100 D3D7 19921101 1%
04 Con. cmd "XEHOW" 0l00 4F43 129391101 1%
0Z Console to ML 0100 0000 19991027 1t
03 "inbk 20" 0100 49230 129391027 1%
0Z Console to AN 0100 1021 19991027 1t
03 "inh 8E" 0100 &2DF 12991027 1%
00 Btart consale 0100 Q000 Zoooozzs 1%
0F Stop executing 0100 0000 Z00002E8 L&
—Destinatior———] Onboard Chip——— r Dongle—————

(+ iZtag Dongle €1 ATITLYET2 ¥ Standard = Ch s

" Onboard chip) AT 7LY000 ! Supertast = PROGRA™1

i EassThrDugh i .&T‘]?L"\"’Dgu Ef Z-TAGM™

: p— e m Now Folder |

|Z-lag image C:ADocumentz and Settingz\CSherman ZFMMICR O WMy Du:u:un| 1024 [1K) bytes written to ztagbuf, bin,

Z-tag and BUR ZFx86 Training Page 134

135

Copy and Paste Commands to Work Area

;f'._Z—tag Manager - C:\Documents and Settings' CSherman.ZFMICRD My Doc

=10l x|

File Edit Miew Commands Toaols Help
Z-tag Contents - 11 items Mew Command Templates:
Id Mame Wer CRC Date Timg: Id Name Wer CRC Date Ti
0z Select Zerial Dewvice 000l 1021 200006095 Z0Z 00 Start EFix Console oool Qoo 1923931z210 1<
01 AMD programmer oool EADE ZOOOOS9Z0 175 0l Tpload & Execute code oool Qoo ZOo000zZlé 1€
FE BIOS start 1CO000 oool 4&1E 20010110 103 0z Select Berial Dewvice ool Qoo 192931210 1«
FF Phoesnix 1.0E5 BIOS oool 2C44 Z001071E 09K 02 Exec Console Cmd Line oool SCEA ZOOO0Oll4 1:Z
01 AMD programmer oool EADE ZOOOOS9Z0 17E5; 04 2dd Command to Console 0100 4F43 Z0O000114 11
FE wxworks loader @ 1AOODOO 0001 ECEZ zZ0010110 104, 0L Stop Processing 000l o000 192931210 1<
FF wxworks loader romeXxt oool 1o0e4 z0010515 101 FE Parameter Definition ool Qooo zOo0005z& 1f
01 AMD programmer oool EADE EZOOOOSEZ0 175 FF Basket oool Qoo 1923931z210 1<
FE wuxworks Imacge @ 100000 0001 03273 zZ001071& 1Z20. FO BLE Compressed Basket ool Qooo zZo0009ll 1€
FF wuxworks. st rom oool o744 Z0001214 101 . .
05 Stop Proceszszing 0001 0000 zooloza? 1ioi| 2aved Z-tag Command Definitions - 8 items
Id MName Wer CRC Date Ti
01 Execute {(out S0k, 1Z34h) 0100 D3D7 19991101 17
04 Con. cmd "XSHOW" olon 4F43 192931101 1%
0z Console to NUL 0olo0 Qoo 123310z27 1f
03 "inbk 20" olo0 4330 12331027 1f
0z Console to AN 0lo0 10E1 1929321027 1f
0z "ink 2&" olon &g3DF 192931027 1f
00 Start console 0lo0 Qoo zOo000zzs 1f
05 Stop executing 0lo0 oooo zOo000zzs 1&
—Destination———— (Onboard Chip—— [Dongle—————
" Z-tag Dongle) ATIFLVE]Z " Standard = Ch EEa
" Onboard chip &) AT17L 010 & Superfast [PROGRA™1
F EassThrDugh r .":"\T-I?L"'"IDED E’ ZTAGEM™

Head

Write

T, |\ ., ¢ e |

|.-'3.|:|:egsing LPT port at address 378h.

Z-tag and BUR

ZFx86 Training Page 135

136 | Copy Program Through the PassThrough Dongle

ﬁz—tag Manager - C:\Documents and Settings CSherman.ZFMICRO% My Docu - |EI|5|

File Edit “ew Commands Tools Help

Z-tag Contents - 11 items Mew Command Templates:
Id HName Yer CRC Date Timé Id MName Wer CRC Date T3
0z ZBelect Serial Dewvice oool 1021l Z0000s0s 20z, 00 Btart EZFix Console ool Qo000 129391210 1«
01 AMD programmer 0ool 5ADE ZO0000%E0 175 01 Tpload & Execute code 000l 0000 Z0000Z1é6 1e
FE EIOS start 1CO000 oool 451E Z0010110 103 0z ZSelect Serial Dewvice ool Qo000 129391210 1+«
FF Phoenix 1.05 EIOE ool sC44 Z001071z2 095 03F Exec Console Cwmd Line oool 9CEA Z0000114 1:
01 LMD programmer oool EADE ZOOO03z0 175 04 Add Command to Console 0100 4F43 Z0000114 11
FE wxworks loader @ 140000 0001 ECES 20010110 104, 0f Stop Processing ool Qo000 129391210 1+«
FF wxworks loader romext oool 1oe4 Z0010515 101 FE Parameter Definition oool o000 Z00005ELE 1t
01 AMID programmer oool EBADE ZOOOOSE0 175 FF Easket ool Qo000 12331210 1«
FE wxworks Image @ 100000 0001 0373 20010716 120 FO RBLE Compressed Basket oool Q000 Z0000211 1¢
FF wxworks. st _rom oool o744 ZO0OOlZ14 1011 S -
05 Stop Processing 000l oooo zoologso? 1io | Daved Z-tag Command Definitions - § items

Id HName Yer CRC Date T3

o0 DED? 19991101 17
o0 4F43 13991101 17
o0 0000 199921027 1%
o0 4990 19991027 1%
o0 10EZ1 13931027 1%
o0 &SDF 19921027 1%
00 0000 ZOOO00EZS 1%

Z-tag Manager is busy...

YWwiniting parallel pazsthrough data...

05 Stop executing 0loo Qoo0 EQOO00zZz28 1f
—Destination——— - Onboard Chip—— ?ﬂngle—
o e e [=-1 3
* PassThrough) ATIFL0E0 = Z-TAGM™T
. Read Write m Mew Folder |
|Super-fast dongle selected |EEEIE|ED [BE5K) butes processed.

Z-tag and BUR ZFx86 Training Page 136

137 Test by Reading Back from the “Memory” Dongle

ﬁz—tag Manager - C:"Documents and Settings’, CSherman.2ZFMICROY My - |EI|5|

File Edit Wiew Commands Tools Help

Z-tag Contents - 3 items Mew Command Templates:

Id Haune Wer CRC Date Time: Id Hame Wer CRC Date T3
01 Upload & Execute code 000l o0o00o0 Z000021e 1lel: 00 Start EFix Console 000l o000 19991F10 1¢
FF Basket gool o000 19991z710 145 01 Tpload & Execute code o001l Qo000 zo00o0zle 1¢

Stop Processing 0001 0000 13531210 145 0Z Select Zerial Dewvice 000l 0000 19931210 l:¢
02 Exec Console Cmd Line 000l 2CEA EQOOOOLLl4 1l:
04 Add Command to Console 0100 4F43 Z0000114 1]

05 Btop Processing oool 0000 192991ZF10 12
FE Parameter Definition 000l 0000 ZO00O0&2& 1F
FF Basket 000l 0000 19991F10 1<

FO BLE Compressed Basket 000l o000 zZoooosll 1e

Saved Z-tag Command Definitions - 8 items

- T Mame Wer CRC Date T3
Confim — E ey v S R TR ETRT
) . .) Con. cmd "XSHOW" 0100 4F43 19991101 17
Reading £-tag deletes cument items in2-tag contents st |ooC01e wo oL 0lo0 0000 19991027 1c
. . "imh 20" 0100 495D 199391027 1°F
Do you want to continue reading? Console to AUX 0100 LO21 19591027 L
"imh 22" 0100 &3DF 19991027 1°F
Mo Start console 0100 0000 zOooooZzzs L&
— Stop executing 0lo0 0000 E0000ZES 1%
Onboard Chip——— rDongle————— I
= Onboard chip Lol I e I] " Superfast (= PROGRA™1
f" EassThmugh rh .":".T-I?L"\."IDED E}Z'TAGMN-I
. Bead Write | Hew Folder |

|Z-tag image C:\Documents and Settingz\CSherman. 2FMICRO My Du:u:un| 1024 [1k) bytes written to ztaghbuf. bin.

The program is stored in an allocated buffer when you read
it, not over your saved commands.

Note that you cannot “Read Back” your Z-tag contents using
the PassThrough dongle.

Z-tag and BUR ZFx86 Training Page 137

BUR Version Test Program Source Code

138

;; Copyright 2002 ZF M cro Devices, Inc. A

rights reserved.

title ZFx86 BETA Code sanpl e Obtains BUR Version Nunber

; build statenents:
;. m /Fl burverl.asm

; exe2com burverl O (this routine available on ZF web site)

. 486
burrom segnent

USE16 at Of 000h

; Services table. These are the function pointers for

; upl oaded code use.
org
Bur _Ver si on db

org
CRLF | abe

org
Ser Qut 16 | abe

org
Ser Send | abel
burrom ends

CODE segment

Of fOOh ; fO000:ff00 in BUR ROM

?

Of f 0Oah

far ; call ffo0:ffOa --> CRILF to COML

of f 22h

far ;o ocall ff00:ff22 --> AX to COML as deci nal
Of f 3ah

far ; call ff00:ff3a --> Charout to COML
USE16 ' CCDE’

assune cs:code

START:
push
pop
nov
xor
cal

| es
nov

cal
cal

retf

psBur _Ver si on dd

Ver Text db
CODE ends
end

Z-tag and BUR

cs
es

di, of fset Ver Text
CX, CX

Ser Send

bx, psBur _Ver si on
ax, es: [bx]

Ser Qut 16
CRLF

Bur _Version
"BUR Version: ',0

START

; ES:DI - text to show
; display until O reached

; es:bx --> Bur_Version String

; display AX to COML as deci nal
; CRILF to CcOML

; resune with BUR

; define string pointer

ZFx86 Training Page 138

1391 BUR (Fail-safe) Boot Up ROM

BUR is built-in software that serves as a prototype debug tool and Flash
update utility. BUR is an internal 12K binary ROM image.

Functionality can be divided into four categories:

« Basic component initialization

« Elementary debugger console functionality through COM1
» Data fetch and execution through Z-tag interface

» Basic OS functionality for user code

Uses of the BUR
» Manufacturing/field tool

» Debug tool
* Fail-safe System

Z-tag and BUR ZFx86 Training Page 139

140 | Basic Component Initialization

After initialization, following system components are active:
* North Bridge
« South Bridge
 ISA Bus
* Internal Static RAM
* IRQ controller
* Timer (8259)
« COM1
« Z-tag interface

Z-tag and BUR ZFx86 Training Page 140

Elementary debugger console functionality

141

ZFix Console Commands

Command

Action

i[n[b])/inw/ind <port>

read 8/16/32-bit value from port

o[ut[b])/outw/outd <port> <value>

write 8/16/32-bit value to port

zfr <register>

read 8-bit value from ZFLogic register

zfw <register> <value>

write 8-bit value to ZFLogic register

db/dw/dd <address>

display memory in byte/word/dword mode

display next memory page in previous mode poke[b]/

d pokew/poked <address> <value(s)> -
linear use linear mode addressing

real use real mode addressing

hlelp]/? show help

ver display verson information

speed <96/19/38/56/115> <hs>

serial speed. Set hs to 1 for RTS/CTS?

yload <address>

load data through YModem to address

ysend <address> <length> [filename]

send data through YModem from address

g[o] <address>

start executing from address

dls

Display available download segment address

a.The default speed on power up is 9600. The <hs> handshake bit is currently not working. You may try

higher speeds, but you may lose data.

ZFi X - ZFx86 PCe I nternal

(c)2001 ZF M cro Devi ces,
DLS

0070

yload 70: 0

(000000600000
YModem dat a transfer
g 70: 0

BUR Version: 0101

Pl ease start YMbdem transm SSi on now or

Consol e

I nc.

// Display available segment for
downloads

press <ESC ...

~waiting for transfer

succeeded.

Z-tag and BUR

ZFx86 Training Page 141

142 | Data Fetch and Execute

There are 7 different type of commands which the BUR
understands and executes:

* 00 - Start/Resume BUR console.

* 01 - Upload and execute code.

* 02 - Serial console mode.

* 03 - Execute console command line.
04 - Add command to a console.

« 05 - Stop.

* FF - Basket

Z-tag and BUR ZFx86 Training Page 142

Basic OS functionality for user code

143

7, Copyright 2002 ZF Enbedded, Inc. Al rights reserved.
title ZFx86 BETA Code sanpl e Obtains BUR Version Nunber

; build statenents:
;. m /Fl burverl.asm

; exe2com burverl O (this routine available on ZF web site)

. 486
burrom segnent

USE16 at Of 000h

; Services table. These are the function pointers for

; upl oaded code use.
org
Bur _Ver si on db

org
CRLF | abe

org
Ser Qut 16 | abe

org
Ser Send | abel
burrom ends

CODE segment

Of fOOh ; fO000:ff00 in BUR ROM

?

Of f 0Oah

far ; call ffo0:ffOa --> CRILF to COML

of f 22h

far ;o ocall ff00:ff22 --> AX to COML as deci nal
Of f 3ah

far ; call ff00:ff3a --> Charout to COML
USE16 ' CCDE’

assune cs:code

START:
push
pop
nov
xor
cal

| es
nov

cal
cal

retf

psBur _Ver si on dd

Ver Text db
CODE ends
end

Z-tag and BUR

cs
es

di, of fset Ver Text
CX, CX

Ser Send

bx, psBur _Ver si on
ax, es: [bx]

Ser Qut 16
CRLF

Bur _Version
"BUR Version: ',0

START

ES: DI - text to show
di splay until O reached

es: bx --> Bur_Version String

di splay AX to COML as deci nal
CR/LF to CcovL

resune wi th BUR

define string pointer

ZFx86 Training Page 143

144

Manufacturing and Field Tools

Manufacturing cycle can use the dongle at two stages:

» Load the Manufacturing Test program to allow diagnostic exer-
cising of the device.

» Update the device as it goes out the door

Very inexpensive device to provide to the field personnel
to troubleshoot on-site.

Z-tag and BUR ZFx86 Training Page 144

145 | BUR: Debug tool

During initial bring-up the BUR allows designer to not
populate any other devices on the board with exception
of the power and clock circuits.

ZFx86 DRAM configurations were all debugged using the
BUR code only.

Small applications can be brought in to the device and
always executed from Z-tag interface

Z-tag and BUR ZFx86 Training Page 145

146 | Fail-safe System

Uses the Z-tag interface, dual WDT, and BUR Code to
provide automatic recovery of the system.

One recovery scenario:

Application overwrites a portion of the OS with Watch
Dog enabled.

Application hangs due to lack of OS.
WDT re-boots into BUR code (bit 23 tied high)

Bur code boots, finds Z-tag device on port and loads
through the port the information present in the serial
EPROM on board.

The code present in the serial EPROM includes the CRC for
the flash device. The BUR code then calculates the flash
CRC and compares it to the expected value.

If CRC is bad, additional programs can be downloaded
through the Z-tag interface to execute a modem call to
the factory requesting new code.

Once new code is downloaded, the flash is updated and
a system reset is executed (a South Bridge Reset or a
jump to ffff fff0) after setting the BUR base address to
zero in index register 57H/58H.

Z-tag and BUR ZFx86 Training Page 146

ZF Micro Devices, Inc.

1052 Elwell Court
Palo Alto, California 94303
(650) 965-3800 - Fax 965-4050

www.zfmicro.com

ZFx86 Training Book 0.80 Rev A Preliminary Specifications Page 147

http://zfmicro.com/
http://www.zflinux.com/

	Chapter 1 - Overview
	Finally a real X86 System on a Chip
	Introducing the ZFx86
	ZFx86 - The Integrating Platform
	ZFx86 Features

	The Chip and the Data Book
	The Block Diagram
	Block Diagram: ZFx86 Vs. RISC

	Pentium vs 486 Core CPU Technology
	The ZFx86 Integrated Development System
	ZFx86 “toy” Board Demonstration Design
	Tri-M Systems MZ104 PC/104 ZFx86 Board
	ZFx86 Documentation
	e-Commerce Server / Companion Chip

	Chapter 2 - x86 Processor
	ZFx86 Block Diagram
	Selling The ZFx86 x86 32-Bit CPU

	Chip Benefits Overview
	Power Management
	Memory Address Space – SDRAM
	Memory Address Space – ISA, PCI, ZF-logic

	Interrupts and the RTOS
	8259A PIC Interrupts
	NMI, SMI and SCI
	Interrupt Vector Assignment
	Privilege Levels – Data Access

	Integrated FPU
	Task State Transitions in VxWorks RTOS
	IOPL and SMM Protection
	MMU – Page Directory and Page Tables
	MMU – Translation Look-Aside Buffer

	Real Mode (DOS)
	Extended and Expanded Memory in Real Mode

	Basic Protected Mode Operation
	Privilege Levels – Code Access

	On Chip – L1 Cache

	Chapter 3 - North Bridge
	ZFx86 Block Diagram
	North Bridge Features
	North Bridge Features Q&A

	North Bridge Overview
	North Bridge SDRAM Controller
	North Bridge PCI
	North Bridge Cache Management

	Bus Arbirtration on the PCI Bus
	PCI vs. ISA bus mastering

	The Role of the NB in Power Management
	Answers to Questions

	Chapter 4 - South Bridge
	ZFx86 Block Diagram
	Definition of Functional Blocks

	Bus Comparison
	Front Side Vs Back Side PCI
	Bus Mastering IDE Controller
	USB.ORG Website
	Super I/O
	Serial Port
	Infrared Communication Port
	Parallel Port
	System Wake Up Control
	Access (I2C) Bus

	Real Time Clock
	Real Time Clock Alarms

	Chapter 5 - ZF-Logic
	ZFx86 Block Diagram
	ZF-Logic Block Diagram
	ZF-Logic Register Space Access (8-Bit)
	ZF-Logic Register Space Access (16, 32-Bit)
	ZF-Logic Registers

	ISA Memory Windows for Flash / SRAM
	Benefits of Memory Window Mapping
	Safety Aspects of Memory Windows
	Memory Window Registers
	ZF-Logic Memory Windows Review Questions

	GPCS I/O Mapper
	GPCS (I/O Mapper) Register Set
	GPCS (I/O Mapper) Control Registers

	Watchdog Timer
	ZF-Logic Registers for the Watchdog Timer
	External Control of Watchdog Timeout

	PWM Generator
	PWM Generator - I/O Control Register

	Boot Parameters Register
	Boot Parameters and Clocking
	Answers To Questions

	Chapter 6 - Z-tag and BUR
	ZFx86 Block Diagram
	Using The Z-Tag Manager
	The Z-tag Dongle
	The Ztag Dongle (Continued)
	Normal vs. PassThrough Download Mode

	The Z-tag Manager Interface
	Z-tag Manager Commands
	Z-tag “Memory” Dongle Programming
	Z-Tag “PassThrough” Dongle Programming
	Put the BIOS in Dongle - First Get Flash Program
	Editing Command 01 - Upload & Execute Code
	Edit Selection of Flash Code, Add BIOS Basket
	Add The Stop Command, Create A “Save” Folder
	Copy and Paste Commands to Work Area
	Copy Program Through the PassThrough Dongle
	Test by Reading Back from the “Memory” Dongle

	BUR Version Test Program Source Code
	BUR (Fail-safe) Boot Up ROM
	Basic Component Initialization
	Elementary debugger console functionality
	Data Fetch and Execute
	Basic OS functionality for user code

	Manufacturing and Field Tools
	BUR: Debug tool
	Fail-safe System

