
Version 0.80 Rev A ZFx86 Training Book Page 1

ZFx86™

System-on-a-Chip

Training Book

Version 0.80 Rev A

December 4, 2001

Version 0.80 Rev A ZFx86 Training Book Page 2

Legal Notice

THIS DOCUMENT AND THE INFORMATION CONTAINED THEREIN IS PROVIDED “AS-IS”
AND WITHOUT A WARRANTY OF ANY KIND. YOU, THE USER, ACCEPT FULL RESPONSI-
BILITY FOR PROPER USE OF THE MATERIAL. ZF MICRO DEVICES, INC. MAKES NO REP-
RESENTATIONS OR WARRANTIES THAT THIS DATA BOOK OR THE INFORMATION
CONTAINED THERE-IN IS ERROR FREE OR THAT THE USE THEREOF WILL NOT
INFRINGE ANY PATENTS, COPYRIGHT OR TRADEMARKS OF THIRD PARTIES. ZF Micro
DEVICES, INC. EXPLICITLY ASSUMES NO LIABILITY FOR ANY DAMAGES WHATSOEVER
RELATING TO ITS USE.

LIFE SUPPORT POLICY

ZF MICRO DEVICES' PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPO-
NENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN
APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF ZF MICRO DEVICES, INC.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical
implant into the body, or (b) support or sustain life, and whose failure to perform when properly
used in accordance with instructions for use provided in the labeling, can be reasonably
expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to per-
form can be reasonably expected to cause the failure of the life support device or system, or to
affect its safety or effectiveness.

(c)2001 ZF Micro Devices, Inc. All rights reserved.

ZFx86, FailSafe FailSafe Boot ROM, Z-tag ZF-Logic, InternetSafe, OEMmodule SCC, ZF Sys-
temCard, ZF FlashDisk-SC, netDisplay, ZF 104Card, ZF SlotCard, and ZF Micro Devices logo
are trademarks of ZF Micro Devices, Inc. Other brands and product names are trademarks of
their respective owners.

Note: Fonts in this book are large in that the book is designed to be used in classroom lecture with an
overhead projector.

Table of Contents
Chapter 1 - Overview .. 7
Finally a real X86 System on a Chip .. 8

Introducing the ZFx86 ... 9
ZFx86 - The Integrating Platform .. 10
ZFx86 Features ..11

The Chip and the Data Book .. 12
The Block Diagram .. 13
Block Diagram: ZFx86 Vs. RISC ... 14

Pentium vs 486 Core CPU Technology .. 15
The ZFx86 Integrated Development System ... 16
ZFx86 “toy” Board Demonstration Design .. 19
Tri-M Systems MZ104 PC/104 ZFx86 Board ... 21
ZFx86 Documentation .. 26
e-Commerce Server / Companion Chip ... 27

Chapter 2 - x86 Processor .. 28
ZFx86 Block Diagram ... 29

Selling The ZFx86 x86 32-Bit CPU ... 30
Chip Benefits Overview .. 31
Power Management ... 32
Memory Address Space – SDRAM .. 33

Memory Address Space – ISA, PCI, ZF-logic ... 34
Interrupts and the RTOS .. 35
Task State Transitions in VxWorks RTOS .. 36
8259A PIC Interrupts .. 37

NMI, SMI and SCI ... 38
Interrupt Vector Assignment .. 39

Real Mode (DOS) ... 40
Extended and Expanded Memory in Real Mode ... 41

Basic Protected Mode Operation ... 42
Privilege Levels – Data Access ... 43
Privilege Levels – Code Access .. 44

MMU – Page Directory and Page Tables ... 46
MMU – Translation Look-Aside Buffer .. 47

IOPL and SMM Protection ... 48
On Chip – L1 Cache ... 49
Integrated FPU ... 50

Chapter 3 - North Bridge .. 53
ZFx86 Block Diagram ... 54

North Bridge Features ... 55
North Bridge Features Q&A .. 56

North Bridge Overview ... 58
North Bridge SDRAM Controller ... 59
North Bridge PCI ... 61
Version 0.80 Rev A ZFx86 Training Book Page 3

Table of Contents
North Bridge Cache Management ... 62
Bus Arbirtration on the PCI Bus ... 63

PCI vs. ISA bus mastering .. 64
The Role of the NB in Power Management .. 65
Answers to Questions .. 66

Chapter 4 - South Bridge .. 68
ZFx86 Block Diagram ... 69

Definition of Functional Blocks .. 70
Bus Comparison ... 71

Front Side Vs Back Side PCI .. 72
Bus Mastering IDE Controller .. 73
USB.ORG Website .. 74
Super I/O ... 75
Serial Port ... 76
Infrared Communication Port .. 77
Parallel Port ... 78
System Wake Up Control .. 79
Access (I2C) Bus .. 80

Real Time Clock ... 81
Real Time Clock Alarms .. 82

Chapter 5 - ZF-Logic ... 83
ZFx86 Block Diagram ... 84
ZF-Logic Block Diagram ... 85

ZF-Logic Register Space Access (8-Bit) ... 86
ZF-Logic Register Space Access (16, 32-Bit) ... 87
ZF-Logic Registers .. 88

ISA Memory Windows for Flash / SRAM .. 91
Benefits of Memory Window Mapping ... 92
Safety Aspects of Memory Windows ... 93
Memory Window Registers ... 94
ZF-Logic Memory Windows Review Questions ... 95

GPCS I/O Mapper .. 96
GPCS (I/O Mapper) Register Set .. 97
GPCS (I/O Mapper) Control Registers .. 98

Watchdog Timer ... 99
ZF-Logic Registers for the Watchdog Timer .. 100
External Control of Watchdog Timeout .. 103

PWM Generator ... 104
PWM Generator - I/O Control Register ... 106

Boot Parameters Register .. 107
Boot Parameters and Clocking ...111
Answers To Questions ..117
Version 0.80 Rev A ZFx86 Training Book Page 4

Table of Contents
Chapter 6 - Z-tag and BUR ... 121
ZFx86 Block Diagram ... 122
Using The Z-Tag Manager ... 123
The Z-tag Dongle ... 124

The Ztag Dongle (Continued) .. 125
Normal vs. PassThrough Download Mode .. 126

The Z-tag Manager Interface .. 127
Z-tag Manager Commands ... 128
Z-tag “Memory” Dongle Programming ... 129
Z-Tag “PassThrough” Dongle Programming ... 130
Put the BIOS in Dongle - First Get Flash Program 131
Editing Command 01 - Upload & Execute Code ... 132
Edit Selection of Flash Code, Add BIOS Basket ... 133
Add The Stop Command, Create A “Save” Folder 134
Copy and Paste Commands to Work Area ... 135
Copy Program Through the PassThrough Dongle 136
Test by Reading Back from the “Memory” Dongle 137

BUR Version Test Program Source Code .. 138
BUR (Fail-safe) Boot Up ROM .. 139
Basic Component Initialization .. 140
Elementary debugger console functionality ... 141
Data Fetch and Execute .. 142
Basic OS functionality for user code ... 143

Manufacturing and Field Tools ... 144
BUR: Debug tool ... 145
Fail-safe System ... 146
Version 0.80 Rev A ZFx86 Training Book Page 5

Table of Contents
Version 0.80 Rev A ZFx86 Training Book Page 6

ZFx86 Training Page 7

7

Overview

ZFx86 Training Book

Chapter 1 - Overview

1Overview

NOTE References compatible with ZFx86 Developers Data Book version 0.80.

12/4/01

ZFx86 Training Page 8

8

Overview

• Processor: 486+ CPU at 128 MHz

• North Bridge: DRAM Controller and FrontSide 64 MHz PCI Bus

• South Bridge: Generates BackSide PCI and ISA Buses.

• USB + Extended IDE Device Interface: on the FrontSide PCI Bus

• SuperIO: Industry Standard X86 I/O + I2C

• ZF-Logic: ZF Additions for Embedded Systems, Low BOM cost, and
FailSafe

Finally a real X86 System on a Chip

ZFx86 Training Page 9

9

Overview

Introducing the
“FailSafe ZFx86” for the next

generation of embedded systems

• Unequaled set of traditional PC H/W features
• Lowest BOM cost in market for lowest OEM product cost
• System level architecture to minimize integration complexity
• ZF H/W features unique to embedded market
• Bundled S/W & Firmware completes PC "system"
• Mainstream .24 micron technology
• “Proven” industry standard architecture
• World class silicon partner

Introducing the ZFx86

10
 ZFx86 - The Integrating Platform
ZFx86 Training Page 10Overview

11
 ZFx86 Features

1. .5 Watts @ 100MHz Typical

2. License free BIOS supporting Windows 9X, CE, DOS,
NT/E, Linux

3. Cyrix 586 FP DX 32 bit core with Pentium class North/
South Bridge

4. Dedicated PCI & ISA Bus - no multiplexing, supports
legacy ISA code

5. USB fully supported

6. SDRAM fully supported

7. Selectable 16/32 bit DRAM Bus reduces memory bloat

8. Patented FailSafeTM system for crash immune opera-
tion

9. Fully PC compatible; runs all x86 code NATIVELY

10. Robust Integrated Development Platform S/W
Installed - DOS, Linux, RTOS, Full BIOS Included
ZFx86 Training Page 11Overview

ZFx86 Training Page 12

12

Overview

The first thing to remember is that if someone asks you
“is it inside the chip?”, the answer is “Yes”.

There is so much inside this chip that you'll be hard
pressed to find something that is not there.1

The second thing you have to remember is that your
best friend is the data book. The data book is over
600 pages long, and covers in detail almost everything
were going to talk about. Most of the stuff in this train-
ing book is just right out of the data book. If you have a
question, go to the data book, it's there.

1. A Pentium Processor and an Ethernet Controller and a Video Controller have been left out of the chip. The
Pentium would have made the entire chip far too complex and expensive -- our enhanced 486/133 with ISA
and ISA and Super I/O (etc) provides lots of functionality and performance.

An Ethernet Controller and Video Controller would have again driven the price and complexity far too high.
However, ZF plans a companion chip to add the Ethernet and Video. See ‘e-Commerce Server / Companion
Chip’ on page 27.

The Chip and the Data Book

ZFx86 Training Page 13

13

Overview

The first reference point is the block diagram. That's what
the chip is all about.

The first thing we're going to talk about is the processor
core. We will step through what is in there. The processor
core talks to what we call the North Bridge.

Then we will talk about what is in the North Bridge. What
things the North Bridge does, how it tries to keep track of
who's talking to whom. The North Bridge talks to the rest of
the system through a Front Side PCI bus. This is an inter-
nal bus; none of these pins come out to the outside world. I
think it interesting and important to note that this is the way it
is structured inside, because some of the devices are actu-
ally right on the internal bus. To the outside world, you have a
Back Side PCI bus.

Talking to the South Bridge through the ISA bus is the
Super I/O. These are traditional PC things, things that we
are used to seeing everywhere.

Everything below the Super I/O is functionality that we
have added to the chip that is beyond the normal PC archi-
tecture. We call this the ZF Logic, the BUR, and the Z-tag.
These are things that we find interesting to the embedded
designers, things that people need to put together their sys-
tems with less cost and less pain then normally is associated
with designing a CPU into an embedded device.

The Block Diagram

14
 Block Diagram: ZFx86 Vs. RISC
RISC Peripheral Integration Den-
sity is much lower than ZFx86

Time-to-Market: x86 is always first
platform supported due to Wintel
dominance

Legacy x86 HW Base will be difficult
for RISC to overtake (Ethernet,
Modems, Graphics Controllers,
HomePNA, etc.)

Integrated RISC Designs require cus-
tom or semi-custom chip develop-
ment and huge $ investment in
design tools.

Expensive and time consuming: Only
available to major corporations RISC
Firmware, O/S and Application
development is longer & requires
unique expertise
ZFx86 Training Page 14Overview

15
 Pentium vs 486 Core CPU Technology
Table 1: Increasing Power - More and More Devices/Chip

CPU Transistors Layers Width SIze

8080 3,000

8085 6,500

8086/8088 29,000

80286 60,000

80386 275,000 10 1 um 257

80486 1,200,000 12 .8 um 357

Pentium 3,100,000 18 .6 um 506

CPU Transistors Layers Width

ZFx86 486+ 2,500,000 20+ .24um

ZFx86 Pentiuma

a. There is no ZFx86 Pentium. The point of the diagram is to show that the “sweet spot” in per-
formance Vs. transistors is the 486+.

4,500,000
ZFx86 Training Page 15Overview

ZFx86 Training Page 16

16

Overview

ZFx86 32bit CPU
10/100Base-T Ethernet
VGA/XGA/SVGA/SXGA
CRT controller
Two serial port connections, one
selectable as IrDA
One parallel port connection
Three PCI expansion slots
Two ISA expansion bus slots
Two USB ports
PS/2 keyboard and mouse
Floppy disk drive
IDE (ATA-4) disk drive

CD ROM disk drive
OS software and utilities
preloaded

Lynx Real-Time Systems, Inc.
Blue Cat Linux
Full Red Hat
Linux 6.X distribution
Phoenix BIOS
Caldera DR-DOS
Wind River VxWorks RTOS

The ZFx86 Integrated Development System

ZFx86 Training Page 17

17

Overview

The ZF ZFx86 Integrated Development System is a network-ready and video-ready, full-function ATX size
evaluation system. The system features ZF's system-on-a-chip, ZFx86, with 10/100Base-T Ethernet (PCI)
card and a display controller (PCI) to create an evaluation environment that allows the OEM designer to
test the ZFx86 processor with proprietary hardware and software.

Complete Feature Set

The ZF ZFx86 Integrated Development System incorporates all the functionality of a standard PC
motherboard with a number of enhancements and added features. The board includes serial and parallel
connectors, floppy disk header and IDE connectors, user-available flash, external JEDEC byte-wide
socket, ISA and PCI expansion bus connectors, and a PC-compatible BIOS. Our patent pending
FailSafe™ Boot ROM allows the user to easily reboot the system if the BIOS is corrupted, or if the CMOS is
inadvertently configured in a manner which locks the system in an unusable mode. The user can then simply
reprogram the FLASH to recover the system. In addition an ATX power supply, a hard drive (preloaded
with an RTOS and Linux OS), a floppy drive, a CD, a keyboard, mouse, and cables are all included to
facilitate the engineer's bring-up task.

Quicker design cycle, shorter time-to-market

Easily integrate the widest selection of embedded hardware peripherals by attaching ISA or PCI expansion
cards directly to the board via the sockets provided. The PC/AT ROM-BIOS and OS enable you to develop
software on your desktop PC and then easily transfer your development work to the embedded system with
little or no modification. Or you can develop your application software directly on the ZF ZFx86 Integrated
Development System.

The ZFx86 Integrated Development System

ZFx86 Training Page 18

18

Overview

The ZFx86 Integrated Development System

ZFx86 Training Page 19

19

Overview

0 DRAM 0 FLASH
BUR Demo

Demo Programs
are transferred to

an on-board
SEEPROM using
the Z-tag man-
ager software.

On power up, the
program is read
into the ZFx86 on
Chip RAM by the

BUR.

8MB DRAM
16 MB Flash
pocket PC

1Mbit on board
SEEPROM can
be used as an on
board Dongle.

On power up, the
program is exe-
cuted out of 16
MB FLASH with
8MB External

DRAM.
1MBit
SEEPROM

ZFx86 “toy” Board Demonstration Design

ZFx86 Training Page 20

20

Overview

Toy Board with ZFx86 System on a Chip

• on-chip keyboard/mouse controller
• on-chip SDRAM Controller
• on-chip Flash Chip Select (Memory Mapper)

1 Mbit SEEPROM 16 MB Flash

Toy Board Continued

21
 Tri-M Systems MZ104 PC/104 ZFx86 Board
The MZ104 board is fully compliant to the PC/104 specification. Using
the ZFx86 on a 6 layer circuit board. The MZ104 brings out most of this
chips’ internal features, and supports a 2 or 4 Megabyte Flash ROM, the
M-Systems DiskOnChip, and a 144 pin SO_DIMM connector supporting
either 32 or 64Mb of fast SDRAM. The MZ104 is the first and least com-
plex member of a family of three PC/104 boards designed around the
ZFx86.
ZFx86 Training Page 21Overview

See www.controlled.com/pc 104/consp5.html). This means that it is part of a fam-
ily of about 5000 boards produced by about 160 suppliers (see pc104.org).

www.controlled.com/pc 104/consp5.html
pc104.org

22
 PC/104 Module Stack
PC104 modules will stack together connecting the bus from one card to
the next. In this case, the top card is a relay board showing the somewhat
industrial history of the PC/104 modules.

In the middle of the stack we have a CPU card, and on the bottom there
is a UPS battery board.

The PC/104 connectors themselves use long pins and deep sockets
which provide a very reliable electrical interconnect and which act as a
spine to strengthen the stack. Nylon or metal spacers are used on the
corners adding strength and rigidity to the stack. Compare this to stan-
dard ISA cards, which are prone to intermittent electrical connections --
especially when in motion!
ZFx86 Training Page 22Overview

23
 PC/104 Enclosure
Pictured here is an aluminum enclosure with rubber shock absorbing
mounts designed specifically for hostile environments.

Enclosures for PC/104 are basically there to protect the electronics from
the environment. They are also designed to shed as much heat as possi-
ble to keep the internal electronics cool. Good designs also include con-
sideration of vibration and G-force minimization to protect the PC/104
stack when mounted in high vibration or G-force locations.

Marketing people like the idea of selling a black box solution whose price
is justified by its function rather than its component costs.These high
stamina enclosures provide added protection and thus added value.
ZFx86 Training Page 23Overview

24
 Three Slot 16-Bit ISA Bus Passive Backplane
This picture shows a MZ104 plugged into a three slot standard 16-bit ISA bus
passive backplane. Backplanes of this type are available from various manu-
facturers.

Backplanes such as this allow you combine ISA cards and PC/104 cards dur-
ing prototyping and testing. Although only the MZ104 card is shown in the fig-
ure, a complete PC/104 stack could be connected to up to three ISA cards
using this backplane.

The backplane allows for easy testing of compatibility of features and functions
in chip sets under consideration for design into your embedded solution.

When would you use a passive backplane? If, for example, you had five differ-
ent frame grabber chip sets, you could purchase ISA cards which use these
chips and then test and implement your software without having to build cus-
tom boards of your own using each of the chips under consideration.
ZFx86 Training Page 24Overview

25
 Development Backplane Board
The Tri-M DEV 104 Development Backplane Board allows not only for
the connection of PC/104 and ISA cards, but provides hardware prototyp-
ing areas for both thru-hole and surface mount electronic components.
This is very useful for solution providers who require the development of
custom boards based on a hardware prototype. In addition to the PC/104
header that the MZ104 is mounted on, there are three additional PC/104
connectors, one of which has male pins facing upwards which allows
testing of components on the back side of a PC/104 card. This is much
easier than testing in a stack!
ZFx86 Training Page 25Overview

ZFx86 Training Page 26

26

Overview

Note: These documents are provided on a CD which accompanies
the ZFx86 Integrated Development System.

Filename Description
ZFx86 Data Book.pdf Complete Data Book.
ZFx86 Training Book.pdf Contains many details of the unique fea-

tures of the ZFx86 device, including the
Dongle. This book.

ZFx86 Integrated Development
System Quick Start Guide.pdf

Top Level User Guide for the ZFx86 Inte-
grated Development System

Annotated Evaluation 1 Board
Schematic.PDF

Development System board schematic
with comments to clarify different aspects
of the board.

ZFx86 Documentation

ZFx86 Training Page 27

27

Overview

ZF is investigating chip sets which would increase the value
of the ZFx86.

A possible companion chip with Graphics and Ethernet ++
might provide a 2-chip solution for 150% of the cost.

e-Commerce Server / Companion Chip

ZFx86 Training Page 28

28

X86 CPU

ZFx86 Training Book

Chapter 2 - x86 Processor

2X86 CPU

12/4/01

ZFx86 Training Page 29

29

X86 CPU

Floppy Disk
Parallel Port
2 Serial Ports
AT Keyboard

PS/2 Mouse
Real-Time Clk
I2C Bus

Super I/O

32-Bit X86 Processor Core

2 USB Devices

North

ZF Fail-Safe

ZF-Logic

SDRAM

Backside
PCI

FPU
8K L1 Cache

4 IDE Devices

Bridge

ZFx86
Fail-Safe

PC-on-a-Chip
Block Diagram

Boot ROM

12K Boot
Up ROM
(BUR)

Programmable Z-tag interface
Programmable PWM Generator
ISA Memory Mapper for Flash/SRAM
ISA I/O Mapper
Bootstrap Control Register
Dual Watchdog Timer

8 GPIO

ZF-Logic Register Set

Z-tag
Controller

Chip
Interface

ISA Bus

Frontside PCI

Test Mode
Control And

Boundary Scan

User/BIOS Scratch Registers

Z-tag
Interface

South
Bridge

JTAG

ZFx86 Block Diagram

ZFx86 Training Page 30

30

X86 CPU

The CPU: a lot of these things that you see
here are X86 and PC buzzwords that you have
seen before. It is in the manual and it is in the
chip.

We will not always be compared to another x86
processor.

When you go out into the field you'll find there
are two groups of people: those people who
have decided to x86 is theirs forever, they love
it and they want it, and they are going to ask
you one set of questions.

Then there's going to be a set of people who
say "I have decided to go with a RISC proces-
sor",. Or "what this Transmeta thing all about":
what is the Caruso1 chip all about? We are
going to go into that later.

1. See ‘Why Not Crusoe’ on page 52.

Selling The ZFx86 x86 32-Bit CPU

ZFx86 Training Page 31

31

X86 CPU

A lot of the stuff that we point out here shows this chip has got it, and
it's a particular attribute of the x86 architecture. Essentially we're picking
up 20 years of legacy. All the best minds in the valley: Intel, AMD, big
companies, have been working on this architecture for the past 20 years.
We just inherited from a "rich Uncle", and that's what we're bringing to
you.

Power management is a hot button everywhere. We will talk about how
power management works through the chip; power management has to
span the entire chip, from the top to the bottom.

We challenge Transmeta to have all the addresses spaces that we
have.1

Interrupts can be tricky, especially when you put PCI onboard.

Write-thru vs. write back cache is explained in the manual very clearly.
Everyone knows that L1 cache is very tightly coupled memory. It is
inside the chip. It is expensive to put in so not everybody does it.

The on-chip cache is 8-K bytes. And it has both modes of write-thru and
write back. The write back cache really helps speed up burst writes
to the DRAM.2

System Management Mode is a totally separate address space entered
via SMI that allows you to use the chip without any of the applications or
the operating system having to know what's happening down below. It is
a really powerful feature those people we need to really get deeply into
the chip.

1. The ZFx86 has separate I/O and Memory address spaces, and the ZFx86 has both an ISA and PCI exter-
nal bus

2. The other benefit of write back cache is that it frees up bus time for other operations, delaying writes until
they are necessary.

Chip Benefits Overview

ZFx86 Training Page 32

32

X86 CPU

Power management goes through the entire chip.
How does it get to the processor? There are two pins,
SUSP#1 and SUSPA# that go into the processor.

Those pins do not go off chip, so why do we mention
them? Those pins have to be activated through the
software from the South Bridge through the North
Bridge to the processor. There's a handshaking pro-
cess that takes place that brings the signals back down
all the way to the South Bridge before the chip actually
shuts down. It takes about 200 clock cycles. That's
not that long.

ZF will provide APM 1.2 power management sup-
port through the Phoenix BIOS (see Interrupt 15h–
APM Services in PhoenixBIOS 4.0 Rev6 User Man-
ual.PDF).

ZF will also provide APM support as part of the ZF
Board (Chip) Support Package for the VxWorks RTOS.

1. See file ZFx86 Power.PDF for power consumption.

Power Management

ZFx86 Training Page 33

33

X86 CPU

In the memory space the CPU allows 4 GB of logical
address space, but the chip is physically limited to
256 MB of SDRAM1. Intel chips map logical to phys-
ical memory space using the built in MMU.

Intel architecture provides a protected mode fea-
ture to allow software to be written to provide task
isolation. Wind River (Tornado 3) and QNX embed-
ded RTOS software will take advantage of this pro-
tected mode.

Intel processors have 64 KB of address space for
Input/Output which is outside of the memory
address space. Thus there is no conflict between
the I/O Space and the DRAM space.2

1. You can also have PCI memory space and ISA memory space. Using the ZF-logic Memory Chip Select
feature, you can add up to 64K of flash/SRAM memory which is viewed through ISA memory viewports (allow-
ing a lot of memory to be viewed through a small ISA memory hole).

2. There are four benefits of having memory and I/O space isolated: (1) the I/O does not create holes in the
DRAM space; (2) in protected mode, using the IOPL bits in the CPU, access to I/O can be restricted to pro-
cesses of high enough privilige; (3) using the I/O BITMAP in the Task State Segment, specific I/O addresses
may be made available to any task; and (4) in a sophisticated O/S like IBM OS/2, DOS sessions can claim I/O
ports using the I/O bitmap. Items 2-4 are features of the protected mode operation of the Intel architecture.

Memory Address Space – SDRAM

ZFx86 Training Page 34

34

X86 CPU

The 256 MB refers to SDRAM but does not refer
to memory on the ISA bus or the PCI bus.

ISA memory can be expanded with minimum cost
using the “extended digital logic”, the ZF-logic.1

1. See ‘Benefits of Memory Window Mapping’ on page 92

Memory Address Space – ISA, PCI, ZF-logic

ZFx86 Training Page 35

35

X86 CPU

Interrupts are one of the key elements which allows
the processor to manage different tasks at the same
time.

Interrupts: this is a good time to talk about the real-time
operating systems because the real-time operating
systems have a very small time delay (called latency)
for processing interrupts.

What they do is that they quickly grab control of the
processor, take care of the I/O which needs to be taken
care of, and then go back to normal program execu-
tion.

In a RTOS such as VxWorks, tasks can be placed on
the ready-list based on time tick interrupts, or based
on interrupt.

The difference between an RTOS and a normal
operating system is the normal operating system
really doesn't have this built-in mechanism to define
which tasks are really important, and queue them
based on real time events.

Interrupts and the RTOS

ZFx86 Training Page 36

36

X86 CPU

Courtesy Wind River Corporation, VxWorks Programmer’s Guide 5.4

VxWorks 5.4
Programmer’s Guide

2.3.3 Wind Task Scheduling

Multitasking requires a scheduling algorithm to allocate the CPU to ready tasks.
Priority-based preemptive scheduling is the default algorithm in wind, but you can
select round-robin scheduling for your applications as well. The routines listed in
Table 2-2 control task scheduling.

Figure 2-1 Task State Transitions

Table 2-2 Task Scheduler Control Routines

Call Description

kernelTimeSlice() Control round-robin scheduling.

taskPrioritySet() Change the priority of a task.

taskLock() Disable task rescheduling.

taskUnlock() Enable task rescheduling.

suspended

pended

taskInit()

The highest-priority ready task is executing.

ready delayed

ready pended
ready delayed
ready suspended

pended ready
pended suspended
delayed ready
delayed suspended

suspended ready
suspended pended
suspended delayed

semTake() / msgQReceive()
taskDelay()
taskSuspend()
semGive() / msgQSend()
taskSuspend()
expired delay
taskSuspend()
taskResume() / taskActivate()
taskResume()
taskResume()

Task State Transitions in VxWorks RTOS

ZFx86 Training Page 37

37

X86 CPU

Within the chip we have 15 different maskable inter-
rupts. These are all the ISA bus interrupts which you
are normally used to seeing. What happens on the
ZFx86, however, is that we have a PCI bus and an ISA
bus. Because we have both buses, the interrupts need
to be shared between the two. The designer of the sys-
tem needs to figure out which interrupts his going to
use where. These maskable interrupts are used for
cards on the ISA bus and cards on the PCI bus.

8259A PIC Interrupts

ZFx86 Training Page 38

38

X86 CPU

NMI (nonmaskable interrupt) this is an interrupt which
can never be turned off. It is always available to the
hardware. Nonmaskable interrupt allows very impor-
tant events to interrupt the processor even if the pro-
cessor has quote turned off" interrupt because it is
perhaps inside interrupt service routine for a critical
section of code.

SMI (system management interrupt) puts a CPU into
system management mode. The system management
mode is a totally separate address space and
interrupts space that allows you to use the device
without any of the applications are headed the
operating systems to know what's happening down
below. It is a really powerful feature those people who
need to really get deeply into the device.

SCI (system controller interrupt) -- generally used with
ACPI (Advanced Configuration & Power Interface).

Up to eight GPIOs in the South Bridge are provided for system control. There are 8 GPIO pins on the ZFx86. The
features include power management event (PME) generation. This means that any of the 8 GPIO pins set in
input mode can be used to wake up the processor. That is, each GPIO pins can be programmed to generate an
SMI or SCI. The Watchdog Timer can also generate RESET, NMI, SMI, or SCI. See ‘Watchdog Timer’ on page
99.

Developed by Intel, Microsoft and Toshiba and announced on January 6, 1997, ACPI is an open industry (any-
one can use it), all-encompassing, PC hardware, Operating System and peripheral device interface spec-
ification. In other words, it specifies a certain manner in which the OS, motherboard hardware and peripheral
devices (such as CD-ROMs, Hard Drives, etc.) talk to each other about power usage. Its primary goal is to
enable Operating System Directed Power Management (OSPM) whereby the Operating System manages all
power activities – providing power to devices only on an as-needed basis. See http://www.teleport.com/~acpi/

NMI, SMI and SCI

http://www.teleport.com/~acpi/

ZFx86 Training Page 39

39

X86 CPU

Interrupt 5 is free because we only have one parallel port onboard. 9, 10, 11, and 12 are
free interrupts. The floppy, which is an internal device, picks up interrupt six.

Traditionally interrups 9,10,11 and 12 are routed to INTA, INTB, INTC and INTD on the PCI
bus. On the PCI bus, all four interrupts go to all four of the slots. What is typically done, when a
card is plugged into the first slot, yet it is a single function device it uses INTA. If it is a dual
function device, say video and audio together, it uses INTA and INTB. What designers normally
to it is that on the first slot that been designated interrupt a goes to interrupt a. On the second
slot, the designated interrupt a goes to interrupt b. On the third one, they route it to c. This
allows devices which are plugged into the slots to always have high priority, because their inter-
rupt a will be routed to 10,11, or 12. The problems come in if you try used 12 for the fourth slot
(if you have a fourth slot) and you have a mouse in your system. Traditionally the mouse also
occupies interrupt 12. So it's very easy to come up with a situation where you have conflicts on
your interrupts. People will run into this trap over and over again. They won't know how to use
these four interrupts together with interrupt 5, and they won't know which ones to put on the ISA
bus in which was to put on the PCI bus.

Regarding interrupt conflicts, we have many many devices onboard. Of course, in people don't
need those devices they can always turn them off.

Table 2.1: Interrupts

INTERRUPT USE USE EXTERNAL

Master 0 IRQ 0 System Timer No

Master 1 IRQ 1 Keyboard Controller No

Master 2 IRQ 2 Slave Interrupt Controller input No

Master 3 IRQ 3 Secondary Serial port (shared) Yes

Master 4 IRQ 4 Primary Serial port (shared) Yes

Master 5 IRQ 5 User Defined Yes

Master 6 IRQ 6 Floppy Disk No

Master 7 IRQ 7 Parallel Port (shared) Yes

Slave 0 IRQ 8 RTC No

Slave 1 IRQ 9 User Defined. Can be PCI interrupt A. Yes

Slave 2 IRQ 10 User Defined. Can be PCI interrupt B. Yes

Slave 3 IRQ 11 User Defined. Can be PCI interrupt C Yes

Slave 4 IRQ 12 User Defined. Can be PCI interrupt D Yes

Slave 5 IRQ 13 Math Coprocessor No

Slave 6 IRQ 14 Primary IDE Channel Yes

Slave 7 IRQ 15 Secondary IDE Channel Yes

Interrupt Vector Assignment

ZFx86 Training Page 40

40

X86 CPU

Real Mode (DOS)

ZFx86 Training Page 41

41

X86 CPU

Extended and Expanded Memory in Real Mode

ZFx86 Training Page 42

42

X86 CPU

Basic Protected Mode Operation

ZFx86 Training Page 43

43

X86 CPU

Privilege levels: there are four different privilege levels. It's a standard x86
processor. But for those guys you need to convince the RISC processors bet-
ter than this, these are the things that we pick up in legacy. A lower privileged
task cannot modify memory which has been assigned by a higher privileged
task or by the operating system.

RIng Model of Protection

(1) A program can call to a code segment descriptor at its own privilege level, or to code segments that are more
trusted. It cannot call to code segments that are less trusted.

A program can RET to a code segment at its own privilege level, or to code segments which are less trusted.

(2) A program can access data at its own privilege level, or data which is less privileged. It cannot access data
which is more privileged.

(3) There are two bits in the flag word called the IOPL (input/output privilege level) which establish what degree
of privilege is required before a program can execute any IN or OUT instructions.

Privilege Levels – Data Access

ZFx86 Training Page 44

44

X86 CPU

Privilege Levels – Code Access

ZFx86 Training Page 45

45

X86 CPU

MMU – Page Level Protection

ZFx86 Training Page 46

46

X86 CPU

MMU – Page Directory and Page Tables

ZFx86 Training Page 47

47

X86 CPU

MMU – Translation Look-Aside Buffer

ZFx86 Training Page 48

48

X86 CPU

IOPL Protection

SMM Protection

IOPL and SMM Protection

ZFx86 Training Page 49

49

X86 CPU

On Chip – L1 Cache

ZFx86 Training Page 50

50

X86 CPU

The floating point unit allows you to process information much faster. Some of
the newer operating systems require the floating point unit.

Integrated FPU

ZFx86 Training Page 51

51

X86 CPU

VALIDATION OF x86 ARCHITECTURE:
LONG WORD INSTRUCTION PROCESSOR SIMULATES x86
PROCESSOR.
ZFx86 NATIVE x86 - CROSS LICENSED W/ INTEL
PERFORMANCE IMPACT DUE TO “CODE MORPHING” SW
HAD TO “RE-INVENT THE WHEEL” AND DEVELOP A NEW
PROCESSOR ARCHITECTURE

LIMITED INTEGRATION
ONLY HAS PCI, SDRAM AND ROM INTERFACES
DOES NOT HAVE FLOPPY, IDE, USB, SERIAL, PARALLEL,
GPIO, PWM, ISA, I2C, REALTIME CLOCK, IRQ, DMA,
MOUSE, KEYBOARD, WATCH DOG TIMER
DOES NOT HAVE VARIABLE WIDTH DRAM BUS,
THEREFORE, MUST USE 32MB DRAM.
CODE MORPHING CODE USES 8-16MB DRAM.
DOES NOT HAVE BUILT IN ROM.

POWER SAVINGS MODES
POWER SPECS STATED HAVE “POWER MANAGEMENT
ENABLED” THIS MEANS THAT PEAK POWER
CONSUMPTION IS AT LEAST 2X THE CHART.
ZFx86 WITHOUT POWER MANAGEMENT IS ABOUT 1 W.
ZFx86 HAS SAME POWER MANAGEMENT STATES WITH
THE ADDITION OF MANY DIFFERENT AND DISTINCT
WAKE-UP INTERFACES

Why Not Crusoe

ZFx86 Training Page 52

52

X86 CPU

SERIAL ROM INTERFACE
ZFx86 HAS PATENT PENDING ON ZTAG INTERFACE.
MAY COVER CRUSOE SERIAL ROM INTERFACE.
CERAMIC PACKAGE
ZFx86 HAS PLASTIC (LESS EXPENSIVE) PACKAGE
COMPETITION AIMED AT PENTIUM SPACE
CHASING MEGAHERTZ AND DESKTOP PROCESSORS
AGAINST BILLION DOLLAR COMPETITORS

SW INTEGRATION MISSING
DOES NOT INCLUDE BIOS OR REAL TIME OS.
SYSTEM COST MUCH HIGHER
LACK OF INTEGRATION REQUIRES ADDITIONAL CHIPS
WIDE DRAM BUS FORCES A FOUR DRAM BUS
CONFIGURATION

Why Not Crusoe

ZFx86 Training Page 53

53

North Bridge

ZFx86 Training Book

Chapter 3 - North Bridge

3North Bridge

12/4/01

ZFx86 Training Page 54

54

North Bridge

Floppy Disk
Parallel Port
2 Serial Ports
AT Keyboard

PS/2 Mouse
Real-Time Clk
I2C Bus

Super I/O

32-Bit X86 Processor Core

2 USB Devices

North

ZF Fail-Safe

ZF-Logic

SDRAM

Backside
PCI

FPU
8K L1 Cache

4 IDE Devices

Bridge

ZFx86
Fail-Safe

PC-on-a-Chip
Block Diagram

Boot ROM

12K Boot
Up ROM
(BUR)

Programmable Z-tag interface
Programmable PWM Generator
ISA Memory Mapper for Flash/SRAM
ISA I/O Mapper
Bootstrap Control Register
Dual Watchdog Timer

8 GPIO

ZF-Logic Register Set

Z-tag
Controller

Chip
Interface

ISA Bus

Frontside PCI

Test Mode
Control And

Boundary Scan

User/BIOS Scratch Registers

Z-tag
Interface

South
Bridge

JTAG

ZFx86 Block Diagram

ZFx86 Training Page 55

55

North Bridge

• CPU single cycle and burst bus transactions support

• Cache coherency support

• Support for SMM bus cycles

• Memory Controller to support Synchronous DRAM (SDRAM). Memory
can be configured as 16 or 32 bits wide.

• Support for up to four banks of SDRAM and 256 Mbytes of memory
space

• CPU bus to PCI bus bridge with PCI arbiter. Support for three external
masters and one internal master. Any on chip or off chip master must
connect via this interface.

• External PCI bus mastership. External bus mastership of System
Controller internal bus. Mastership allows access to system controller
memory devices.

• SDRAM Write Buffer – 32 Bytes

• CPU to PCI Write Buffer – 32 Bytes

• PCI Write Buffer – 16 Bytes

• PCI Read Pre-fetch Buffer – Dual 16 Bytes

• Support for Power Management signals from the South Bridge

North Bridge Features

56 North Bridge Features Q&A

1] What is “North Bridge CPU single cycle and burst bus transactions

support”? What is a burst cycle and how and why does the North Bridge
get involved?

a] __

__

2] What is cache coherency support and why would the North Bridge need
to support it? Is this a unique ZFx86 feature?

a] __

__

3] What are SMM bus cycles and why would the North Bridge need to sup-
port them?

a] __

__

4] Why is there a benefit if the chip supports memory which is either 16 or
32-bits wide? Why is the a benefit of having 4 banks each having a maxi-
mum size of 64 MB rather than 1 bank with a maximum size of 256 MB?

a] __

__

__

5] Why do we need a CPU bus to PCI bus bridge? What is a CPU bus and
what is a PCI bus? What is a bridge? What is the difference between a
North Bridge and a South Bridge? Why do we discuss arbritration and
PCI bridges at the same time, are they related? Is this unique to the
ZFx86?

a] __

__

__

__
ZFx86 Training Page 56North Bridge

57 North Bridge Features Q&A (Continued)

6] What is support for three external masters and one internal master.

Who could be a master? What is an internal master and why can you only
have one? What is an external master (external to what)? Why can you
only have three? What would be a typical external master and why would
one want to have one?

a] __

__

7] What is the benefit of all of these buffers? If they are so important, then
doesn’t everyone have them?

• SDRAM Write Buffer – 32 Bytes

• CPU to PCI Write Buffer – 32 Bytes

• PCI Write Buffer – 16 Bytes

• PCI Read Pre-fetch Buffer – Dual 16 Bytes

a] __

__

__

__

8] What is the relationship between Power Management and the South
Bridge? Why does the North Bridge need to support power management
signals in the South Bridge? Where do they come from, where do they go,
and how are the signals turned on and off? Is this any different than the
way that other contemporary chips work?

a] __

__

__

__

__

__

[] Check Your Answers on Page page 66.
ZFx86 Training Page 57North Bridge

ZFx86 Training Page 58

58

North Bridge

The North Bridge components was traditionally a Pentium class North Bridge;
many of the features that you will find in the North Bridge are all Pentium class
features. One of the things which is unique about our design is that the proces-
sor is fast enough so that it competes with some of the lower end Pentium's in
terms of processor power.

When you go to the manual in the North Bridge a lot of these things are
pointed out: cache coherency, CPU write-thru and write back cache support
etc.

We do concurrent PCI and DRAM access.

We now have chips at 66 MHz system clock which means that the DRAM
interface for the chip is running at 66 MHz. That is a very high-performance
configuration. The system performance is almost double having a 66 MHz
system clock and a 133 MHz processor vs. having a 33 MHz system clock and
a 133 MHz processor. The processor just starves to death with no data.

North Bridge Overview

ZFx86 Training Page 59

59

North Bridge

There are lots of things in the North Bridge. But the North Bridge has two
major tasks: the first one is an SDRAM controller. The SDRAM controller
manages the DRAM facilities are onboard.

SDRAM rather than EDO/Fast Page RAM

We have chosen an SDRAM interface which is much faster than
the normal EDO. or fast page mode interfaces. Also, EDO and
fast page mode are quickly going away and you can't buy them.1

We have up to four banks and up to 256 MB of memory, so that the really want
to have a lot of memory in your system you are welcome to do that.

SDRAM vs. EDO or fast page mode memory. SDRAM is a very fast DRAM.
Essentially once we've pumped up and put out two clock pulses it will provide
data on every clock. That is much faster, almost twice as fast, as EDO or fast
page mode memory.

It is important we provide support for 16 Mb, 64 Mb and 128 Mb (bit) devices
with addresses to A11 (12 address lines). You can mix DRAM sizes and
widths on different banks.

1. The SDRAM interface is a good feature to have. Many of the competitors
still use EDO memory.

The Elan 410/410 is still stuck with older DRAM interfaces. The new AMD pro-
cessor does have the SDRAM interface, but it is the only one. Many RISC
processors still use EDO/fast page mode memory. So this advantage is impor-
tant.

North Bridge SDRAM Controller

ZFx86 Training Page 60

60

North Bridge

16 or 32-bit wide DRAM Bus

One key feature that we have which allows us to have a $30 or $40 cost
advantage over the competition is the ability to go with either a 16-bit wide or a
32-bit wide DRAM bus. Why is this important? Because most of the devices
which are sold are sold in configurations which are only 16-bit wide
.
When you power up the system for the first time with our chip all you need is a
single DRAM chip 16-bits wide. When you look that all the competitors, espe-
cially the MediaGX, the Pentium class processors, ST microelectronics pro-
cessor, the industrial PC, the consumer PC, they all have 64-bit wide DRAM
busses. The 64-bit means that as a minimum you need four DRAM chips to
start up the system. That tend to $13 a chip, you have three extra chips that
you need. That gives us a 30 to $40 price advantage for anybody who wants a
really small embedded system.

North Bridge SDRAM Controller (Continued)

ZFx86 Training Page 61

61

North Bridge

The PCI features of the North Bridge: the North Bridge controls who gets on
the first. There's bus mastering which occurs. This essentially means that
any device which is on the PCI bus can take control of the entire system and
grab memory by itself. This is arbitrated by the North Bridge.

You have concurrent PCI and DRAM access from the processor, allowing the
processor to write to the PCI and the DRAM at the same time. This is a very
powerful feature.

The North Bridge has CPU single cycle and burst bus transaction support.
That means that you can ask for one word at a time, or a string of words at a
time.

North Bridge PCI

ZFx86 Training Page 62

62

North Bridge

Cache management: when you have a cache on chip the data inside starts
getting old. There are times when the North Bridge decides the data that is
inside the cache needs to be flushed back to main memory because some
device is asking for that memory location (that has been updated in the cache
already).

North Bridge Cache Management

ZFx86 Training Page 63

63

North Bridge

Bus arbitration: essentially the North Bridge is the guy who decides who gets
the PCI bus. The North Bridge is the one which will support up to three extra
masters and two internal masters: the CPU and the South Bridge. So we have
up to five devices that can master the PCI bus: three of them are external and
two of them are internal. When you look at the competitors, AMD has the Elan
520 which allows five bus masters: this is one area where they have a couple
more features than we do. The normal answer that I would provide anyone
who is questioning me on this area is that if you have a processor with this kind
of processing power, to put by PCI bus masters on it is probably overkill any-
way.1

1. However, you can always add an external chip which allows you to pig-
gyback bus masters. Each chip allows you four more masters, but takes up
one master. So each chip gives you a net gain of three masters.

Bus Arbirtration on the PCI Bus

ZFx86 Training Page 64

64

North Bridge

We do not support ISA bus mastering. Typically bus mastering is something
which issues to make the system go very fast. To make things happen quickly.
Since we do support PCI bus mastering, if any customer has a concern about
data availability or getting data to the processor issue just use the PCI. When
you look at some of the differences, the clock is 8 MHz on the one hand 33
MHz on the other.

Although ISA bus mastering is not supported, DMA is supported on the ISA
bus. So you can have direct memory access from the ISA bus but it will
involve the CPU. We have both an 8-bit and 16-bit DMA transfer available to/
from the ISA bus.

The complexity that we would have had to add to the chip do support ISA as
well as PCI bus mastering was not worth the trade-off.

Item ISA PCI Comment

Clock 8 MHz 33 MHz factor of 4

Data width 16 bits 32 bits factor of 2

Bus Master-
ing

No Yes Complexity of adding ISA bus
mastering to North bridge con-
troller was not warranted.

PCI vs. ISA bus mastering

ZFx86 Training Page 65

65

North Bridge

The other thing that the North Bridge does is support the power management
signals from South Bridge.

The Role of the NB in Power Management

Answers to Questions
Answers to Questions
<page 56>

1] What is “North Bridge CPU single cycle and burst bus transactions sup-
port”? What is a burst cycle and how and why does the North Bridge get
involved?

a] __

__

2] What is cache coherency support and why would the North Bridge need to
support it? Is this a unique ZFx86 feature?

a] __

__

3] What are SMM bus cycles and why would the North Bridge need to support
them?

a] __

__

4] Why is there a benefit if the chip supports memory which is either 16 or 32-
bits wide? Why is the a benefit of having 4 banks each having a maximum size
of 64 MB rather than 1 bank with a maximum size of 256 MB?

a] __

__

5] Why do we need a CPU bus to PCI bus bridge? What is a CPU bus and what
is a PCI bus? What is a bridge? What is the difference between a North Bridge
and a South Bridge? Why do we discuss arbritration and PCI bridges at the
same time, are they related? Is this unique to the ZFx86?

a] __

__
North Bridge ZFx86 Training Page 66 Answers to Questions

6] What is support for three external masters and one internal master. Who
could be a master? What is an internal master and why can you only have one?
What is an external master (external to what)? Why can you only have three?
What would be a typical external master and why would one want to have one?

a] __

__

7] What is the benefit of all of these buffers? If they are so important, then doesn’t
everyone have them?

• SDRAM Write Buffer – 32 Bytes

• CPU to PCI Write Buffer – 32 Bytes

• PCI Write Buffer – 16 Bytes

• PCI Read Pre-fetch Buffer – Dual 16 Bytes

a] __

__

__

__

8] What is the relationship between Power Management and the South Bridge?
Why does the North Bridge need to support power management signals in the
South Bridge? Where do they come from, where do they go, and how are the
signals turned on and off? Is this any different than the way that other contem-
porary chips work?

a] __

__

__

__

__

__
ZFx86 Training Page 67North Bridge Answers to Questions

ZFx86 Training Page 68

68

South Bridge

ZFx86 Training Book

Chapter 4 - South Bridge

4South Bridge

12/4/01

ZFx86 Training Page 69

69

South Bridge

Floppy Disk
Parallel Port
2 Serial Ports
AT Keyboard

PS/2 Mouse
Real-Time Clk
I2C Bus

Super I/O

32-Bit X86 Processor Core

2 USB Devices

North

ZF Fail-Safe

ZF-Logic

SDRAM

Backside
PCI

FPU
8K L1 Cache

4 IDE Devices

Bridge

ZFx86
Fail-Safe

PC-on-a-Chip
Block Diagram

Boot ROM

12K Boot
Up ROM
(BUR)

Programmable Z-tag interface
Programmable PWM Generator
ISA Memory Mapper for Flash/SRAM
ISA I/O Mapper
Bootstrap Control Register
Dual Watchdog Timer

8 GPIO

ZF-Logic Register Set

Z-tag
Controller

Chip
Interface

ISA Bus

Frontside PCI

Test Mode
Control And

Boundary Scan

User/BIOS Scratch Registers

Z-tag
Interface

South
Bridge

JTAG

ZFx86 Block Diagram

ZFx86 Training Page 70

70

South Bridge

Looking to block diagram, the South Bridge is another
very standard Pentium class device. Some devices
are internal to the South Bridge. They are connected
directly on the front side PCI bus. These are the USB
devices, the IDE devices, and GPIO. All of these
come on chip. In addition to that the South Bridge con-
trols what is called the Super I/O.

Functional blocks

Here is a list of things that the South Bridge does.

• Front Side PCI Interface
• Back Side PCI Interface
• Bus Mastering IDE Controller
• Universal Serial Bus
• Integrated Super I/O
• ACCESS.bus interface
• AT Compatibility
• ISA Interface
• Power Management
• GPIOs

Definition of Functional Blocks

ZFx86 Training Page 71

71

South Bridge

Bus Type Speed
(MB/s)

Distance Noise Device
Complexity

Accessa

a.For I2C Bus, see http://www-us.semiconductors.com/i2c/

0.1875 12 inches Low Simple

Serialb

b.See ‘Serial Port’ on page 76

0.0115 100 feet Med/High Medium

Parallel 10 feet Low Medium

ISAc

c.See ISA System Architecture, by Don Anderson and Tom Shanley
(MindShare) (ISBN 0-201-40996-8)

4 12 inches Low High

USBd

d.See http://usb.org/. See also ‘USB.ORG Website’ on page 74.

1,2,4 5 feet High Medium

PCIe

e.See PCI Hardware and Software Architecture & Design, 4th Edi-
tion, Solari & Willse, Annabooks, IBSN 092939259-0. See also the
PCI SIG on the web at http://www.pcisig.com/index.php3?t2=1

132 4 inches Low High

IDEf

f. For Ultra DMA Ultra DMA Implementation Guide, http://
www.wdc.com/products/drives/drivers-ed/udmatp.html

4 12 inches Low High

GPIO 1 12 inches Low Simple

IrDAg

g.For IrDA and Linux, see http://www.cs.uit.no/linux-irda/ . Some IrDA
Data Sheets appear on the ZFx86 IDS CD. The SuperI/O incorpo-
rates an Infrared Communication Port that supports FIR, MIR, HP-
SIR, Sharp-IR, and Consumer Electronics-IR. The IrDA data rate is
up to 115.2 Kbps (SIR), Data rate of 1.152 Mbps (MIR), Data rate of
4.0 Mbps (FIR). See ‘Infrared Communication Port’ on page 77.

0.115 - 4.0

Z-Tag 1.5 Simple

Bus Comparison

http://www-us.semiconductors.com/i2c/
http://usb.org/
http://www.pcisig.com/index.php3?t2=1
http://www.wdc.com/products/drives/drivers-ed/udmatp.html
http://www.wdc.com/products/drives/drivers-ed/udmatp.html
http://www.cs.uit.no/linux-irda/

ZFx86 Training Page 72

72

South Bridge

It is possible to clock the front side of the South Bridge
at one speed and the Back Side side of the chip at
another speed.

IDE

Configuration

PW
Legacy

PM Floppy/Parallel/Serial/

UDMA33

USB

ISA

FXBus

Front Side PCI

PCI Interface

XBus

Back Side PCI

USB

33-66 MHz

33 MHz

RegistersGPIOs

ZF

SIO
Logic

IR/RTC/Access Bus/
Fan CTRL/KBD-Mouse/
Wake-Up

GPIOs

(ISA/PIC/PIT/DMA)

Front Side Vs Back Side PCI

ZFx86 Training Page 73

73

South Bridge

The IDE controller is very powerful. It supports all the
types of IDE transfers that exist. It supports the PIO
modes 0,1,2,3, Ultra DMA, ATA format compatible. If
you get the question "does the chip do it", the answer
is yes.

• One channel with support for up to two IDE devices

• Second IDE channel for two more devices off GPIO

• Independent timing for master and slave devices

• PCI bus master burst reads and writes

• Ultra DMA (ATA-4) support

• Multiword DMA support

• Programmed I/O (PIO) Modes 0-4 support

Bus Mastering IDE Controller

ZFx86 Training Page 74

74

South Bridge

USB.ORG Website

ZFx86 Training Page 75

75

South Bridge

What's inside the Super I/O?

• PC98 and ACPI Compliant

• Floppy Disk Controller (FDC)

• Parallel Port

• Serial Ports 1 and 2

• Infrared Communication Port

• Keyboard and Mouse Controller (KBC)

• System Wake-Up Control (SWC)

• Real-Time Clock

Access bus. See text on page 80.

Parallel Port (EPP, ECC, IEEE 1284). Once again,
does the chip do it? Yes! See text on page 78.

• It does EPP.

• It does ECC.

• It does IEEE 1284.

• It is fully compatible.

Super I/O

ZFx86 Training Page 76

76

South Bridge

What you will find is the chip does what has tradition-
ally been done with the serial port, plus. And with this
chip, there's almost always a plus. For example, what
is the traditional serial ports rate? 115K baud. How
fast does this one go? 1.5 Mb. We always to what the
traditional thing does plus. Does the chip do it? Yes,
it's in there!

—Software compatible with the 16550A and the 16450
—Shadow register support for write-only bit monitoring
—UART data rates up to 1.5 Mbps

Serial Port

ZFx86 Training Page 77

77

South Bridge

The Infrared Comm Port contains the following:

• Data rate of up to 115.2 Kbps (SIR)

• Data rate of 1.152 Mbps (MIR)

• Data rate of 4.0 Mbps (FIR)

• Selectable internal or externalmodulation/demodula-
tion (Sharp-IR)

• Consumer-IR (TV-Remote) mode

• Software compatible with the 16550A and the 16450

• Shadow register support for write-only bit monitoring

• HP-SIR

• ASK-IR option of SHARP-IR

• DASK-IR option of SHARP-IR

• Consumer Remote Control supports RC-5, RC-6,
NEC, RCA and RECS 80

• Non-standard DMA support - 1 or 2 channels

Infrared Communication Port

ZFx86 Training Page 78

78

South Bridge

Parallel Port (EPP, ECC, IEEE 1284). Once again,
does the chip do it? Yes! It does EPP. It does ECC. It
does IEEE 1284. It is fully compatible.

• Software or hardware control

• Enhanced Parallel Port (EPP) compatible with new ver-
sion EPP 1.9 and IEEE 1284 compliant

• EPP support for version EPP 1.7 of the Xircom specifica-
tion

• EPP support as mode 4 of the Extended Capabilities
Port (ECP)

• IEEE 1284 compliant ECP, including level 2

• Selection of internal pull-up or pull-down resistor for
Paper End (PE) pin

• PCI bus utilization reduction by supporting a demand
DMA mode mechanism and a DMA fairness mechanism

• Protection circuit that prevents damage to the parallel
port when a printer connected to it powers up or is oper-
ated at high voltages, even if the device is in power-
down

• Output buffers that can sink and source 14 mA

Parallel Port

ZFx86 Training Page 79

79

South Bridge

System wake-up control. There are all types of real-
time clock alarms. This device can be awakened in so
many ways that once again the answer (to the ques-
tion does the chip do it) is yes! You can wake up on
the modem, on the keyboard, on right clicks, on left
clicks, on double clicks, on general-purpose events
(GPIO inputs) -- -- there are all kinds of different ways
to wake up the chip after you put it to sleep.

• Power-up request upon detection of Keyboard, Mouse, RI1,
RI2, RING, PME1 and PME2 activity, as follows:

• Preprogrammed Keyboard or Mouse sequence
• External modem ring on serial ports
• Ring pulse or pulse train on the RING input
• General-purpose events, PME1 and PME2

• Battery-backed wake-up setup

• Power-fail recovery support

System Wake Up Control

ZFx86 Training Page 80

80

South Bridge

What is an access bus? It's a very simple interface --
it’s two wires that allows you to do multi-drop. Multi-
drop allows you to put more than one device on the
chain. The access bus is compatible with the Philips
I2C bus or Intel's System Management Bus (SMB). It
does what these buses do and more. It runs up to
1.5 Mbps.

Access (I2C) Bus

ZFx86 Training Page 81

81

South Bridge

Real Time Clock contains the following:

• Accurate timekeeping and calendar management

• Alarm at a predetermined time and/or date

• Three programmable interrupt sources

• Valid timekeeping during power-down, by utilizing external battery
backup

• 242 bytes of battery-backed RAM

• RAM lock schemes to protect its content

• Internal oscillator circuit (the crystal itself is off-chip), or external
clock supply for the 32.768KHz clock

• A century counter

• PnP support

• Relocatable index and data registers

• Module access enable/disable option

• Host interrupt enable/disable option

• Additional low-power features such as:

• Automatic switching from battery to VCC_IO

• Internal power monitoring on the VRT bit

• Oscillator disabling to save battery during storage

• Software compatible with the DS1287 and MC146818

Real Time Clock

ZFx86 Training Page 82

82

South Bridge

Real-time clock alarms: the timekeeping function used
generate an alarm when the current time reaches a
stored alarm time. Essentially, you wake up the chip
based on an alarm instead of an external event, or you
use the alarm to trigger various events

Real Time Clock Alarms

ZFx86 Training Page 83

83

ZF-Logic

ZFx86 Training Book

Chapter 5 - ZF-Logic

5ZF-Logic

84
 ZFx86 Block Diagram
ZFx86 Training Page 84ZF-Logic

Floppy Disk
Parallel Port
2 Serial Ports
AT Keyboard

PS/2 Mouse
Real-Time Clk
I2C Bus

Super I/O

32-Bit X86 Processor Core

2 USB Devices

North

ZF Fail-Safe

ZF-Logic

SDRAM

Backside
PCI

FPU
8K L1 Cache

4 IDE Devices

Bridge

ZFx86
Fail-Safe

PC-on-a-Chip
Block Diagram

Boot ROM

12K Boot
Up ROM
(BUR)

Programmable Z-tag interface
Programmable PWM Generator
ISA Memory Mapper for Flash/SRAM
ISA I/O Mapper
Bootstrap Control Register
Dual Watchdog Timer

8 GPIO

ZF-Logic Register Set

Z-tag
Controller

Chip
Interface

ISA Bus

Frontside PCI

Test Mode
Control And

Boundary Scan

User/BIOS Scratch Registers

Z-tag
Interface

South
Bridge

JTAG

85
 ZF-Logic Block Diagram
ZFx86 Training Page 85ZF-Logic

Boot Up ROM

Z-tag

ISA Interface

PWM

ISA Memory Mapper

Address

FDD MUX

System FDD Lines

FDD Lines

PWM

ISA Address

Internal ISA Bus

CS

MUX

ZF-Logic Features

to the ZFL
Register Set
Ports 218-21A

Scratch
Registers

io_cs*
IO/Mapper(BUR)

ZFx86 Internal

Mem_cs*

Read 24-Bits on ResetBootstrap
Registers

Watchdog
wdi, wdo

NMI, SCI, SMI,
or reset

ISA Address

Note: The features of the ZFL include:

• ZFL Register Set in ISA I/O Space

• Programmable PWM generator

• Programmable Watchdog timer

• ISA Memory Mapper for Flash/SRAM

• ISA I/O Mapper General Purpose Chip Select (GPCS)

• Programmable Z-tag Interface

• Bootstrap Register (DIP switches/Pull-Ups) External Control of Boot Process

• User and BIOS Scratch Registers

86
 ZF-Logic Register Space Access (8-Bit)
ZFx86 Training Page 86ZF-Logic

• ZF Logic is Controlled or Accessed through about 86 8-bit registers.

• Four ISA I/O Addresses are used provide Access to The Registers

QUESTIONS:

1] Why do we have 86+ Registers in the ZF Logic?

a] __

__

2] Why do we use 4 (rather than 86+) ISA Addresses?

a] __

__

3] PROGRAMMERS: Write Code to Read Revision into CX register (asm) or
16-bit unsigned int (C)

a] __

__

[] Check Your Answers on page 117.

Index 8-Bit Data at Index 8-Bit Data at Index + 1

02 ZF-Logic Revision (LSB) -- (02H) ZF- Logic Revision (MSB) -- (03H)

Index (Pointer)

8-Bit Data Pathway

OUT 218H Set Pointer

IN/OUT 219H
Transfer 8-bit data

86 Registers

ZFx86 Training Page 87

87

ZF-Logic

ZF-Logic Register Space Access (16, 32-Bit)

• ZF Logic is Controlled or Accessed through about 86 8-bit registers.

• Many of these registers are logically 16 or 32-bits wide

• By setting 218H to put to a 16 or 32-bit base, 2 or 4 consecutive bytes
from the ZF register space can be transferred with a single IN or OUT
(or C inp or outp) instruction.

Index 8-Bit Data at Index 8-Bit Data at Index + 1

02 ZF-Logic Revision (LSB) -- (02H) ZF- Logic Revision (MSB) -- (03H)

Index (Pointer)

8-Bit Data Pathway

OUT 218H Set Pointer

IN/OUT 219H
Transfer 8-bit data

86 Registers

16,32-Bit Data Pathway

IN/OUT 21AH
Transfer 16,32-bit data

Example: Read the 16-Bit Data at Index 02 to pick up the ZF-Logic Revision:

mov al,02h ; Index
mov dx,218h ; Index Address
out dx,al ; Set Index

; read the value
mov dx,21Ah ; Data Viewport
in ax,dx ; AX=1234H (current revision of ZF-Logic)

ZFx86 Training Page 88

88

ZF-Logic

ZF-Logic Registers

Index 8-Bit Data at Index 8-Bit Data at Index + 1

02 ZF-Logic Revision (LSB) -- (02H) ZF- Logic Revision (MSB) -- (03H)

04 PWM Prescaler Low Byte -- (04H) PWM Prescaler High Byte - (05H)

06 PWM duty cycle -- (06H)

08 PWM I/O Control -- (08H)

0A PWM Read Output -- (0AH)

0C Watchdog 1 Count Low Byte --
(0CH)

Watchdog 1 Count High Byte -- (0DH)

0E Watchdog 2 Count Value -- (0EH) Watchdog Reset Pulse Length --
(0FH)

10 Watchdog Control Low -- (10H) Watchdog Control High -- (11H)

12 Watchdog Events -- (12H)

14 I/O Window 0 Base Low (14H) I/O Window 0 Base High (15H)

16 I/O Window 0 Control (16H)

18 I/O Window 1 Base Low (18H) I/O Window 1 Base High (19H)

1A I/O Window 1 Control (1AH)

1C I/O Window 2 Base Low (1CH) I/O Window 2 Base High (1DH)

1E I/O Window 2 Control (1EH)

20 I/O Window 3 Base Low (20H) I/O Window 3 Base High (21H)

22 I/O Window 3 Control (22EH)

24

P
W
M

W
/D

I/O
W
in
do
w

ZFx86 Training Page 89

89

ZF-Logic

ZF-Logic Registers (2/3)

26 Memory Window 0 Base Bits 7-0 MW0 Base 15-12 MW0 Base 11-8

28 Memory Window 0 Base Bits 23-16 Memory Window 0 Base Bits 31-24

2A Memory Window 0 Size Bits 7-0 MW0 Size 15-12 MW0 Size 11-8

2C Memory Window 0 Size Bits 23-16 Memory Window 0 Size Bits 31-24

2E Memory Window 0 Page Bits 7-0 MW0 Page 15-12 MW0 Page 11-8

30 Memory WIndow 0 Page Bits 23-16 Memory Window 0 Page Bits 31-24

32 Memory Window 1 Base Bits 7-0 MW1 Base 15-12 MW1 Base 11-8

34 Memory Window 1 Base Bits 23-16 Memory Window 1 Base Bits 31-24

36 Memory Window 1 Size Bits 7-0 MW1 Size 15-12 MW1 Size 11-8

38 Memory Window 1 Size Bits 23-16 Memory Window 1 Size Bits 31-24

3A Memory Window 1 Page Bits 7-0 MW1 Page 15-12 MW1 Page 11-8

3C Memory Window 1 Page Bits 23-16 Memory Window 1 Page Bits 31-24

3E Memory Window 2 Base Bits 7-0 MW2 Base 15-12 MW2 Base 11-8

40 Memory Window 2 Base Bits 23-16 Memory Window 2 Base Bits 31-24

42 Memory Window 2 Size Bits 7-0 MW2 Size 15-12 MW2 Size 11-8

44 Memory Window 2 Size Bits 23-16 Memory Window 2 Size Bits 31-24

46 Memory Window 2 Page Bits 7-0 MW2 Page 15-12 MW2 Page 11-8

48 Memory Window 2 Page Bits 23-16 Memory Window 2 Page Bits 31-24

4A Memory Window 3 Base Bits 7-0 MW3 Base 15-12 MW3 Base 11-8

4C Memory Window 3 Base Bits 23-16 Memory Window 3 Base Bits 31-24

4E Memory Window 3 Size Bits 7-0 MW3 Size 15-12 MW3 Size 11-8

50 Memory Window 3 Size Bits 23-16 Memory Window 3 Size Bits 31-24

52 Memory Window 3 Page Bits 7-0 MW3 Page 15-12 MW3 Page 11-8

54 Memory Window 3 Page Bits 23-16 Memory Window 3 Page Bits 31-24

M
em

or
y
W
in
do
w

ZFx86 Training Page 90

90

ZF-Logic

ZF-Logic Registers (3/3)

56 BUR Base Low (57H)

58 BUR Base High (58H)

5A Memory Control Low (5AH) Memory Control High (5BH)

5C

5E Z-tag Data Write Register (5EH)

60 Z-tag Data Read Register (60H)

62 Bootstrap Bits 7-0 (62H) Bootstrap Bits 15-8 (63H)

64 Bootstrap Bits 23-16 (64H)

66 I/O+Memory Window Map Events
66H

68 Scratch Register 0 Low (68H) Scratch Register 0 High (69H)

6A Scratch Register 1 Low (6AH) Scratch Register 1 High (6BH)

6C Scratch Register 2 Low (6CH) Scratch Register 2 High (6CH)

6E Scratch Register 3 Low (6EH) Scratch Register 3 High (6FH)

70 Scratch Register 4 Low (70H) Scratch Register 4 High (70H)

72 Scratch Register 5 Low (72H) Scratch Register 5 High (73H)

74 Scratch Register 6 Low (74H) Scratch Register 6 High (75H)

76 Scratch Register 7 Low (76H) Scratch Register 7 High (77H)

78 Scratch Register 8 Low (78H) Scratch Register 8 High (79H)

7A Scratch Register 9 Low (7AH) Scratch Register 9 High (7BH)

7C Z-tag control register (7CH) Z-tag Sequencer Divisor Register
(7DH)

7E Z-tag Sequencer Waveform (7EH) Z-tag Sequencer Strobe Points (7FH)

80 Z-tag Sequencer Data (80H) Z-tag Sequencer Status (81H)

S
cr
at
ch

R
eg
is
te
rs

ZFx86 Training Page 91

91

ZF-Logic

ISA Memory Windows for Flash / SRAM

ISA Memory Mapper

Address ISA Address
MUX

Mem_cs*

ISA Address

Translated ISA
Address

Memory Mapper Pins

PKG Name Description

B04 Mem_cs0 ZF-Logic Memory Mapper CS
0

D05 Mem_cs1 ZF-Logic Memory Mapper CS
1

A03 Mem_cs2 ZF-Logic Memory Mapper CS

ISA Address

External Address
Space (Flash, etc.)

ISA Address Space

16 MB

Size

Base

Page +

0 MB

Window

Window

Address

0

Generally, the ISA address which comes from
the internal ISA address bus is propagated
out to the external ISA address bus. How-
ever, if a mem_cs is active, because the
address falls in the left window range (base to
base plus size), then a mem_cs is generated
and the translated ISA address is written out
to the physical address bus.

Window

if Page = -Base

Base

ZFx86 Training Page 92

92

ZF-Logic

Benefits of Memory Window Mapping
• The ZFL allows the ZFx86 to control up to four external memory

devices on the ISA bus. These devices can be mapped into the sys-
tem memory address space. Typically, this feature is used to map
external Flash memory into the address space without external
address decoding logic.

• Each device can occupy up to 16 Megabytes (occupying all 24 ISA
address lines).

• In DOS mode these windows can be up to 256K bytes and reside
only in upper 1 Mbyte DOS ROM area (C0000-FFFFF).

• In protected mode the windows can occupy all 24 ISA address lines
(000000 - FFFFFF). This area is accessed in protected mode through
memory space above system SDRAM. If the address is not in the
system memory and no PCI device claims it then it is forwarded to the
ISA bus. This makes the ISA bus useful multiple times in the upper
memory area.

• Memory can be 8 or 16 bits wide, and may be write protected.

• note: This is Static RAM or Flash -- this is not the SDRAM Controller
memory.

Memory Control Low -- Index 5AH

Bit 7 6 5 4 3 2 1 0

Function w3_ro w2_ro w1_ro w0_ro w3_8 w2_8 w1_8 w0_8

Default 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Bit Name Function

7:4 wn_ro
Window n Read-write Control
0: Window N Is Read-write
1: Window N Is Read-only

3:0 wn_8
Window n Data Bus Width
0: Window N Uses 16-bit Data Access
1: Window N Uses 8-bit Data Access

ZFx86 Training Page 93

93

ZF-Logic

Safety Aspects of Memory Windows

• Programmer/OS can request interrupts on Memory Window Overlap,
Memory Change.

• Memory can be 8 or 16 bits wide, and may be write protected.

• Design Idea: Part of a Flash can be Write Protected by using two
mem_cs* signals - one set R/W and one set R/O.

note: in case of overlapping addresses, mem_cs will not be asserted. The effect of the
Events register is to cause notification via interrupt of this problem.

I/O and Memory Window Mapper Events -- Index 66H

Bit 7 6 5 4 3 2 1 0

Function Reserved Event Type Memory
Overlap

I/O
Overlap

Memory
Window
Change

I/O
Window
Change

Default 0 0 0 0 0 0

R/W R/O R/W R/W R/W R/W R/W

Bit Name Function

7:6 Reserved

5:4 Event Type

Generated event type
00 - No event
01- SCI
10 - NMI
11 - SMI

3
Memory Over-
lap

Enable resolve event on memory overlap
0: Disable event on memory overlap
1: Enable event on memory overlap

2 I/O Overlap
Enable event on I/O window overlap
0: Disable event on I/O window overlap
1: Enable event on I/O window overlap

1
Memory
Access

Enable event on memory window change
0: disable event
1: enable event

0 I/O Access
Enable event on I/O window change
0: disable event
1: enable event

ZFx86 Training Page 94

94

ZF-Logic

Memory Window Registers
1. First window settings
• 2CH-2BH: Mem_cs0 window size 0 - FFF000 = 16 MB / 0FFFFH
• 30H-2FH: Mem_cs0 page 0 - FFF000 = 16 MB / 0
• 28H-27H: Mem_cs0 base address 0 - FFF000 = 16 MB / F0000H

2. Second window settings

• 38H-37H: Mem_cs1 window size
• 3CH-3BH: Mem_cs1 page
• 34H-33H: Mem_cs1 base address

3. Third window settings
• 44H-43H: Mem_cs2 window size
• 48H-47H: Mem_cs2 page
• 40H-3FH: Mem_cs2 base address

4. Fourth window settings

• 50H-4FH: Mem_cs3 window size
• 54H-53H: Mem_cs3 page
• 4CH-4BH: Mem_cs3 base address

5. 5BH-5AH: Control (R/W, 8/16 Width)

6. 66H: Events (SMI, etc.)

notes: SMI (System Management Interrupt) is used for legacy SMM BIOS; SCI (System Con-
trol Interrupt) is used for ACPI OS. Also, when determing whether or not an addresses emit-
ted by the processor should generate a mem_cs*, the upper 8-bits of the 32-bit memory
address are ignored. Thus a memory page can appear (alias) many times in the (CPU’s) 4
GB address space.

31 24|23 12|11 0

12 bits 12 bits8 bits

32 bits

00H User Defined 00H

Bits 23-16 Bits 15-12

There are two 8-bit registers each for Window Size, Base and Page. In each case, the
two 8-bit registers supply bits 15-12 and bits 23-16 respectively. You may access these
registers as a 32-bit operand. For example, to reference Window 0 Page Size, do a 32-bit
transfer with the index set to 2EH (covering 2E-2F-30-31 hex).

Fields in 32-bit memory settings registers

Initialization
Special Use of Mem_cs0

All the windows settings are initial-
ized to 0 on power up reset. Set-
ting a window size to 0 disables
the window (the mem_cs*).

mem_cs0 is generally used for the
boot ROM (flash). Thus the first
window reset defaults are as
shown above.

Window Size, Base Address, Page
(translated address) all have a
range of 0-16 MB. The mapping is
disabled when window size is zero.

95
 ZF-Logic Memory Windows Review Questions
ZFx86 Training Page 95ZF-Logic

4] Looking at the ‘ZF-Logic Block Diagram’ on page 85, what is the difference
between the internal ISA bus and the output (on the lower right) called "ISA
Address"? What is the function of the address multiplexer shown in the
diagram, and when is the operative?

a] __

__

5] What are the necessary and sufficient conditions to cause a mem_CS sig-
nal to be asserted by the ZFx86? Even if these conditions are met, when
will a mem_cs signal not be asserted?

a] __

__

6] How many 32-bit ZF-Logic "memory window" registers are associated with
the four mem_cs signals? See ‘ZF-Logic Registers (3/3)’ on page 90.

a] __

__

7] List the benefits to the customer which accrue from the ZFx86 memory win-
dow mapping feature.

a] __

__

8] What is the benefit to the customer due to the fact that his operating sys-
tem may be notified based on memory window change? How this notifica-
tion occur? See "I/O and memory window mapper events -- index 66 hex"
on page 14.

a] __

__

9] What a special about mem_cs0? In order for that to work, what must hap-
pen?

a] __

__

[] Check Your Answers on Page page 118.

96
 GPCS I/O Mapper
ZFx86 Training Page 96ZF-Logic

• ZFx86 has four GPCS (General Purpose Chip Select) signals
mapped to io_cs* pins.

• Each io_cs* signal is assigned an address (or a set of consecutive
addresses) in the ISA I/O space. This address, or set of consectutive
addresses, is called the "window".

• Benefits: Each I/O Chip, requiring 1 to 16 consecutive I/O addresses,
can be connected to the ZFx86 without glue logic.

• You can specify read-only or read-write, and 8 or 16-bit wide data
transfers.

• Benefit: if your I/O chip is 8 or 16-bits wide, you do not need special
logic to inform the ZFx86 -- it is set up in the control registers.

• There is no address translation here: just appropriate io_cs* genera-
tion.

io_cs*I/O Mapper

GPCS Pins

PKG Name Description

B03 io_cs0 ZF-Logic I/O Mapper GPCS 0

A02 io_cs1 ZF-Logic I/O Mapper GPCS 1

A01 io_cs2 ZF-Logic I/O Mapper GPCS 2

C03 io_cs3 ZF-Logic I/O Mapper GPCS 3

notes: For example, if the chip you wish to connect to the ZFx86 using one of the io_cs pins
has four ports (such as the old 8255 chip), you would want the chip select to be asserted for
four consecutive addresses. The chip itself would differentiate between the addresses by
looking at the low two bits of the ISA address bus

ZFx86 Training Page 97

97

ZF-Logic

GPCS (I/O Mapper) Register Set

1. GPCS 0 settings

• 15H-14H: io_cs0 base address 0000 - FFFFH (CPU I/O Range)
• 16H: io_cs0 control RO/RW, 8/16 bit data, size, enable

2. GPCS 1 settings

• 19H-18H: io_cs0 base address
• 1AH: io_cs0 control

3. GPCS 2 settings

• 1DH-1CH: io_cs0 base address
• 1EH: io_cs0 control

4. GPCS 3 settings

• 21H-20H: io_cs0 base address
• 22H: io_cs0 control

5. Events Register (66H)Window Change, Overlap

• A chip select may be generated for any 1 to 16 consecutive
addresses in any part of the CPUs to 64K I/O address space. The
Intel architecture supports only 64K of I/O address space, so the 16-
bit base address provides precise and complete locating of the chip
select decode.

• Sufficient control information is required on a per chip-select basis, to
require one control byte for each I/O chip select.

• The same events register (66H) is used for the memory and I/O map-
ping. The same errors are detected.

ZFx86 Training Page 98

98

ZF-Logic

GPCS (I/O Mapper) Control Registers

I/O Window “N” Control

Bit 7 6 5 4 3 2 1 0

Function win_ro 16_bit act_lvl win_en win_siz: I/O Window Size (1-16)

Default 0 0 0 0 0 (Size is 1)

R/W R/W R/W R/W R/W R/W

Bit Name Function

7 win_ro

I/O window read/write control
0: Access is read-write
1: Access is read-only

Setting window to read-only mode disables IOW_N
signal on ISA bus for IO window address range.

6 16_bit
I/O window datapath width
0: 8-bit wide access
1: 16-bit wide access

5 act_lvl
io_cs active level
0: io_cs is active low
1: io_cs is active high

4 win_en
I/O window enable in I/O space
0: I/O window is disabled
1: I/O window is enabled

3:0 win_siz

Number of consecutive 8-bit I/O addresses to decode
starting from I/O window base.

The number of consecutive addresses decoded is
win_siz + 1. For example, setting the window size to 0
enables one I/O address at I/O window base. Setting
size to 0Fh will enable I/O window of 16 addresses
starting from I/O window base.

ZFx86 Training Page 99

99

ZF-Logic

Watchdog Timer

• Whenever WD1 is not reloaded during a pre programmed interval it
generates an event to notify the system of an error condition.

• The first watchdog timer is initialized to a 16-bit timeout value through
registers 0Ch and 0Dh. After enabling through control register (10h) it
starts the countdown to zero. The first watchdog timer can be
reloaded to an initial value by writing into control register (10h) or
asserting watchdog external control pin on ZFx86 (WDI).

• Whenever the first watchdog is not reloaded during the timeout value
it generates an event to notify the system of an error condition and
outputs the logical "1" to a watchdog output pin on ZFx86 (WDO). The
notification event can be routed to NMI, SMI, SCI or it can reset the
system immediately.

• The second watchdog timer 8-bit timeout value is initialized through
register 0Eh and starts counting down after WD1 time-out. When the
WD2counterreacheszero,itwillunconditionallycausesystemreset.

WDI
WD1 WD2

MUX
NMI

WD0

32 KHz

SCI
SMI
RESET

16-bit counter
2 sec. max

8-bit counter
7.2 ms max

RESET

100
 ZF-Logic Registers for the Watchdog Timer
ZFx86 Training Page 100ZF-Logic

• Count Registers - Reload Values for Watchdog Timers

• Watchdog Reset Pulse Length - the number of 32kHz ticks to hold
the system reset signal low

• Watchdog Control: Enable/Disable, and MUX Control

0C Watchdog 1 Count Low Byte (0CH) Watchdog 1 Count High Byte (0DH)

0E Watchdog 2 Count Value (0EH) Watchdog Reset Pulse Length (0FH)

10 Watchdog Control Low (10H) Watchdog Control High (11H)

12 Watchdog Status (12H)

101
 ZF-Logic Registers for the Watchdog Timer
ZFx86 Training Page 101ZF-Logic

Watchdog Control Low -- Index 10H

Bit 7 6 5 4 3 2 1 0

Function reserved
wd2
load

wd1
load

reserved
wd2

enable
wd1

enable

Default 0 0 0 0 0 0

R/W R/O R/W R/W R/O R/W R/W

Bit Name Function

7:6 Reserved

5 wd2 load
Reload WD2 counter.
Active event for this bit is transition from 0 to 1

4 wd1 load
Reload WD1 counter.
Active event for this bit is transition from 0 to 1

3:2 Reserved

1 wd2 enable
Enable wd2
0: WD2 is disabled
1: WD2 is enabled

0 wd1 enable
Enable wd1
0: WD1 is disabled
1: WD1 is enabled

102
 ZF-Logic Registers for the Watchdog Timer
ZFx86 Training Page 102ZF-Logic

Watchdog Control High -- Index 11H

Bit 7 6 5 4 3 2 1 0

Function reserved wdi_en wdo_-1
wdi
edge

wd1
reset

wd1
SMI

wd1
NMI

wd1
SCI

Default 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Bit Name Function

7 Reserved
6 wdi_en Enable the assertion of WDI input pin on ZFx86 to

to reload the watchdog 1 counter
0: WDI input ignored
1: WDI assertion reloads watchdog 1 counter

5 wdo_-1 Create output on WDO output pin on ZFx86 at WD1
time-out or one 32kHz clock tick before
0: WDO signal will be set high on WD1 expiration
1: WDO signal is set high one clock tick before WD1
expires. WD1 events will always occur at WD1 time-out
and are not affected by wdo_-1 bit setting.

This feature permits automatic reload of WD1 when
WDO is wired to WDI.

4 wdi edge Active front of WDI input
0: WDI is asserted on 0->1 transition
1: WDI is asserted on 1->0 transition

3 wd1 reset WD1 generates system reset on time-out
0: WD1 will not generate system reset on time-out
1: WD1 will generate system reset on time-out

2 wd1 SMI WD1 generates SMI on time-out
0: wd1 will not generate SMI on time-out.
1: wd1 generates SMI on time-out

1 wd1 NMI WD1 generates NMI on time-out
0: wd1 will not generate NMI on time-out
1: wd1 generates NMI on time-out

0 wd1 SCI WD1 generates SCI on time-out
0: wd1 will not generate SCI on time-out
1: wd1 generates SCI on time-out

103
 External Control of Watchdog Timeout
ZFx86 Training Page 103ZF-Logic

• Square Wave on WDI may reset (external reset)

• Wiring WD0 to WDI through Gate allows use of Logic Level rather
then Square Wave

• When wiring WDO to WDI, to prevent event (NMI, etc) (so long as
gate is on) then use wdo-1 to set reset of WD#1 1 event before expi-
ration

WDI WD#1 WD#2

MUX
NMI

WD0

32 KHz

SCI
SMI
RESET

16-bit counter
2 sec. max

8-bit counter
7.2 ms max

RESET

External
Square
Wave

External
Logic
Level

MUX
count

count-1

wd0-1 bit

Notes: There is a WDO and WDI pin -- the WDI can be programmed to reload WD#1. If you toggle WDI (fall-
ing or rising) you can prevent the WD from ever expiring. The benefit of this is that so long as an external
square wave is coming in, the WD never expires. You are thus using an EXTERNAL way of keeping the
ZFx86 from resetting -- you are watching for an external “dead man” switch.

To do this, you need to have an outside event generator. Let’s assume that all you have is a logic signal
which shows you if the external system is working or not. You can then connect WDO to WDI with an OR
gate or AND gate to that external signal.

If you set it up this way, then you set wdo-1 to generate event 1 pulse before expiring. If you did not do this, it
would expire. See wdo-1 in "Watchdog Control High -- Index 11H" on page 102

ZFx86 Training Page 104

104

ZF-Logic

PWM Generator

• The PWM (Pulse Width Modulation) output may be used to create DC
control voltage for an LCD backlight or any other device that requires
this feature. The conversion is done by integrating variable duty cycle
signal externally. At higher frequencies it may be used to control
external transformer for DC/DC conversion.

16-bit Prescaler 8-bit counter
Comparator

16-PWM duty cycle value

32kHz/8MHz PWM Out

PWM period defined by
registers 04h, 05h and 08h

% from cycle to be LOW
defined by register 06h

ZFx86 Training Page 105

105

ZF-Logic

PWM Generator Period / Duty Cycle

• PWM Prescaler: Divides 8MHz or 32kHz input clock selected at PWM
control register. Actual divisor is 16-bit PWM divisor word (combined
of registers 04h and 05h) + 1

• PWM Duty Cycle: Sets the % of the cycle to be low. (0 = 100%,
255 = 0%).

• PWM I/O Control: Includes selection of 32kHz clock or 8 MHz ISA
clock

ZF-Logic Index for the PWM Generator

04 PWM Prescaler Low Byte -- (04H) PWM Prescaler High Byte - (05H)

06 PWM duty cycle -- (06H)

08 PWM I/O Control -- (08H)

0A PWM Read Output -- (0AH)

PWM period defined by
registers 04h, 05h and 08h

% from cycle to be LOW
defined by register 06h

ZFx86 Training Page 106

106

ZF-Logic

PWM Generator - I/O Control Register

PWM I/O Control -- Index 08H

Bit 7 6 5 4 3 2 1 0

Function reserved
enable
direct

direct
output

reserved
slow-
fast
clksrc

Enable
PWM

Default 0 0 0 0 0 0

R/W R/O R/W R/W R/O R/W R/W

Bit Name Function

7:6 Reserved

5 enable direct
Enables direct control of PWM output by bit 4

0: PWM drives the output
1: Bit 4 of register 08H drives the PWM output pin

4 direct output The value of PWM output when bit of register 08h is set to 1
3:2 Reserved

1 slow-fast (clksrc)
Selects the PWM prescaler input clock
1: PWM is clocked by 32kHz clock
0: PWM is clocked by 8 MHz ISA clock

0
Enable/Disable
PWM

Enable/Disable PWM output
0: PWM is disabled
1: PWM is enabled

ZFx86 Training Page 107

107

ZF-Logic

Boot Parameters Register

• When power-on reset is asserted 24 signals are read into the Boot
Parameters Register (configuration register) from the ISA Address
Bus.

• In a typical design, DIP switches or jumpers are used (with appropri-
ate resistors) set to the bits in the BootStrap Register.

ZF-Logic Index for the Boot Parameters Register

62 Bootstrap Bits 7-0 (62H) Bootstrap Bits 15-8 (63H)

64 Bootstrap Bits 23-16 (64H)

The ISA address bus (pins SA0-SA23) is tri-stated during the reset pulse. It contains on-chip
weak (about 20K) pull-ups and pull-downs to set the default state of the bootstrap register. To
override this, we use a 2.2K pull-up or pull down and a DIP switch or jumper. Once the reset
pulse is done, the ISA bus has sufficient drive to overcome the effect of these 2.2K resistors.

Thus, conceptually the ISA address bus has three "modes": (1) the weak on-chip pull-ups/
pull-downs which are operative during the tri-state; (2) the 2.2K pull-ups/pull-downs which
may be activated via DIP switches; and (3) the normal execution time mode where the drive
of the ISA address bus will override these resistors.

Since the Boot Parameters Register is read only, the values sampled on the ISA bus on the
trailing edge of reset are "permanent" until the next hardware reset. Software can read the
data which is latched, but cannot change the data in the bootstrap registers.

Note: This schematic is a sample. Refer to ZF’s reference designs for
a "real world" DIP switch application.

ZFx86 Training Page 108

108

ZF-Logic

Boot Parameters Register (Continued)

Boot Up ROM

Z-tag

ISA Interface

PWM

ISA Memory Mapper

Address

FDD MUX

System FDD Lines

FDD Lines

PWM

ISA Address

Internal ISA Bus

CS

MUX

ZF-Logic Features

to the ZFL
Register Set
Ports 218-21A

Scratch
Registers

io_cs*
IO/Mapper(BUR)

ZFx86 Internal

Mem_cs*

Read 24-Bits on ResetBootstrap
Registers

Watchdog
wdi, wdo

NMI, SCI, SMI,
or reset

ISA Address

Example:

; read bootstrap registers as 32-bit value into EAX

0102 B0 62 mov al,62h
0104 BA 0218 mov dx,ZFLINDEX
0107 EE out dx,al
0108 BA 021A in eax,dx
010D 66| 25 00FFFFFF and eax,0FFFFFFh

ZFx86 Training Page 109

109

ZF-Logic

Boot Parameters Register (Continued)

When you plug the dongle in, it automatically sets BS23.

ISA BIT Index Bit Name Default Function

23 64H 7 Boot from BUR
(sometimes
called
ZTAG_EN)

0 Boot from BUR
1 = Boot from BUR
0 = Boot from Flash

Note: This schematic is a sample. Refer to ZF’s reference designs for
a "real world" DIP switch application.

Sample DIP Switch Settings

SW Function

1 ON - USER DEFINED

2 ON - USER DEFINED

3 ON - USER DEFINED

4 ON - USER DEFINED

5 ON - EXT ROM when Z-tag enableda

a. This bit should NOT be used in real designs.
It is for testing only.

6 System Clock Speed

7 System Clock Speed

8 ON - Boot from BUR

110
 Boot Parameters Register (Continued)
ZFx86 Training Page 110ZF-Logic

Composite BootStrap Register Map

ISA
BIT

Index Bit Name Def Function

0-3 62H 0-3 User Defined 0 User Defined
5 62H 5 14 Mhz clock

source
0 14MHz Clock Source

If 1, derive from 48Mhz.
If 0, use mhz14_c pin. [AF16]

6 62H 6 32 KHz 0 32KHz Clock Source
If 1, derive for 48MHz.
If 0, use 32KHZC [AF01]

9 63H 1 3rd PCI Request 0 Third PCI Request/Grant
1 = drq1 = req2_n and dack1_n =
gnt2_n

11 63H 3 Reserved 1 Internal / External BUR Source.
0 = External BUR
1 = Internal BUR

12 63H 4 ISA Boot ROM
Width

1 ISA Boot ROM Width
0 = 16 bit
1 = 8 bit

16
17

64H 0, 1 486 Clk Multiply 11 00 - Sys Clk * 1
01 - Sys Clk * 2
11 - Sys Clk * 3 (default)
10 - Sys Clk * 4

18 64H 2 FPCI divide 0 Frontside PCI Clock Divide.
0- SysClk
1 - SysClk / 2...

19 64H 3 BPCI divide 0 Backside PCI Clock Divide.a.

0- SysClk
1 - SysClk / 2..

20 64H 4 BPCI Select 1 Backside PCI Clock Select.a

0 - External clock.
1- Internal clock.

a. If Bit 20 is 1, then Bit 19 has no affect.

23 64H 7 Z-tag enable 0 Causes BUR Boot. Enables the
Z-Tag Interface and BUR if high.

111
 Boot Parameters and Clocking
ZFx86 Training Page 111ZF-Logic

Full Clocking Diagram

ISA
BIT

Index Bit Name Def Function

5 62H 5 14 Mhz clock
source

0 14MHz Clock Source
If 1, derive from 48Mhz.
If 0, use mhz14_c pin. [AF16]

6 62H 6 32 KHz 0 32KHz Clock Source
If 1, derive for 48MHz.
If 0, use 32KHZC [AF01]

48MHz clk

32KHz clk RTC

14MHz clk

Mux 1Clk /1484

Clk/4 = 12MHz
Mux 2

32345

14.318MHz

O.Mux

O.Mux GPIO[0]

GPIO[4]

BS[6] BS[5] IOC[22] IOC2[7]

USB CLK

33/66 MHz clk SYS CLK

NOTES: The ZFx86 System-on-a-Chip has various clocking options. These options represent different trade-
offs that the designer must investigate to come to the best solution for the application being considered. Essen-
tially, the chip can be clocked using as many as four sources or as few as one.

ZFx86 Training Page 112

112

ZF-Logic

Clocking Choices (1)

48MHz clk

32KHz clk RTC

14MHz clk

Mux 1

Mux 2

14.318MHz

O.Mux

O.Mux

BS[6] BS[5] IOC[22] IOC2[7]

USB CLK

33/66 MHz clk SYS CLK

ZFx86 Training Page 113

113

ZF-Logic

Clocking Choices (2)

48MHz clk

32KHz clk RTC

14MHz clk

Mux 1

Mux 2

14MHz

O.Mux

O.Mux GPIO[0]

GPIO[4]

BS[6] BS[5] IOC[22] IOC2[7]

USB CLK/ SYS CLK

• LIMITED OPTIONS ON DRAM AND CPU CLOCK.

ZFx86 Training Page 114

114

ZF-Logic

Clocking Choices (3)

BS[6] BS[5] IOC[22] IOC2[7]

48MHz clk

32KHz clk RTC

Mux 1

Clk/4 = 12MHz
Mux 2 O.Mux

O.Mux GPIO[0]

GPIO[4]

USB CLK/ SYS CLK

• LIMITED OPTIONS ON DRAM AND CPU CLOCK,
ISA CLOCKING OFF.

ZFx86 Training Page 115

115

ZF-Logic

Clocking Choices (4)

• Simplest clock choice: Lose RTC on Power
down, incur error in time, and ISA timing.

BS[6] BS[5] IOC[22] IOC2[7]

48MHz clk
Mux 1Clk /1484

Clk/4 = 12MHz Mux 2

32345

O.Mux

O.Mux GPIO[0]

GPIO[4]

RTC

ZFx86 Training Page 116

116

ZF-Logic

Clocking Summary

Performance

• What is the best clocking for the customer?
Application Key Clock

Kiosc SYSCLK @ 66,
CPU 2X, PCI /2

Taxi SYSCLK @ 48
CPU 2X, 32KHZ

POS SYSCLK @ 48, CPU
2X, 32KHz

Agriculture SYSCLK 48 ONLY

ZF-Logic ZFx86 Training Page 117

Answers to Questions

<page 86>

1] Why do we have 86+ Registers in the ZF Logic?

a] The actual address range of the ZF-Logic registers is index
about 128 byte addresses. Of these, approximately 86 off th
have read/write data fields. We need this many registers to c
control and status bits for all of the functions built into the ZF

2] Why do we use 3 (rather than 86+) ISA Addresses?

a] The industry standard architecture, a derivative of the first IB
puter, has many assigned and reserved addresses within th
space. In order to have a minimum profile, we access all of
logic registers using three and only three ISA I/O addresses

3] PROGRAMMERS: Write Code to Read Revision into CX reg
bit unsigned int (C)

a]

mov al,02h ; Index
mov dx,218h ; Index Address
out dx,al ; Set Index

; read the value
mov dx,21Ah ; Data Viewport
in ax,dx ; AX=1234H

; this solution cheats and uses a 16-
bit transfer that we have not covered
yet.

uchar ucLow, ucHigh;
unsigned int uiRevision
#define INDEX 0x218
#define TRANSFER 0
#define REVISION_L
#define REVISION_M

// solve using 8-bit tran

outp (INDEX, RE
ucLow = inp (TRA
outp (INDEX, RE
ucHigh = inp (TRA
uiRevision = ucHi

// alternative using 16-

#define TRANSFER16

outp (INDEX, RE
uiRevision = inpw
Answers To Questions
Answers to Questions

2 through 81H, or
e byte addresses
ontain all of the
-Logic.

M personal com-
e I/O address
the ZFL control
.

ister (asm) or 16-

;

x219
SB 2
SB 3

sfers

VISION_LSB);
NSFER);

VISION_MSB);
NSFER);

gh * 256 + ucLow;

bit transfer

32 0x218

VISION_LSB);
(TRANSFER1632);

<page 95>

4] Looking at the ‘ZF-Logic Block Diagram’ on page 85, what is the difference
between the internal ISA bus and the output (on the lower right) called "ISA
Address"? What is the function of the address multiplexer shown in the dia-
gram, and when is the operative?

a] Addresses on the internal ISA bus are generally routed to the output pins on the
ZFx86 whenever there are memory read, memory write, input read, and output
write, transfer cycles. That is, unless the ISA memory mapper grabs certain
memory read and memory write cycles, the addresses from those cycles propa-
gates directly out on the ISA address bus. However, if a memory address is in
the range specified by the base to base + size, then two things happen: (1) the
appropriate mem_cs is generated; and (2) the ISA memory mapper provides a
translated address and that is the address which goes out on the external ISA
address bus pins. Thus the function of the address multiplexer shown in the dia-
gram is to route to the external ISA address bus either (1) the ISA address from
the internal ISA bus, or (2) the translated ISA address from the ISA memory
mapper.

Boot Up ROM

Z-tag

ISA Interface

PWM

ISA Memory Mapper

Address

FDD MUX

System FDD Lines

FDD Lines

ISA Address

Internal ISA Bus

CS

MUX

ZF-Logic Features

to the ZFL
Register Set
Ports 218-21A

Scratch
Registers

io_cs*
IO/Mapper(BUR)

ZFx86 Internal

Mem_cs*

Read 24-Bits on ResetBootstrap
Registers

Watchdog
wdi, wdo

NMI, SCI, SMI,
or reset

ISA Address
ZFx86 Training Page 118ZF-Logic Answers to Questions

5] What are the necessary and sufficient conditions to cause a mem_CS signal to
be asserted by the ZFx86? Even if these conditions are met, when will a
mem_cs signal not be asserted?

a] In order to get one of the four mem_cs signals to be generated, a memory read
or memory write generated by the CPU must (1) reach the internal ISA bus, and
(2) be between the window base address and the window base+size.

Note that mem_cs signal not be asserted in the window size equals 0 (as it
turns off ISA memory mapping for that window), or if this memory window over-
laps another memory window. Review ‘ISA Memory Windows for Flash / SRAM’
on page 91.

6] How many 32-bit ZF-Logic "memory window" registers are associated with the
four mem_cs signals? See ‘ZF-Logic Registers (3/3)’ on page 90.

a] There are 3 32-bit registers per memory window or a total of 12 32-bit registers.
These registers contained the base, size, and target offset (page). There are
other control registers (a control and an event register), but the basic window
mapping occurs using the 3 32-bit registers per window.

7] List the benefits to the customer which accrue from the ZFx86 memory window
mapping feature.

a] The first, and most important benefit, is that no extra hardware or glue logic is
required to in order to manage the chip selects for up to 4 SRAM or flash
devices. In addition, each device may be programmed to be read-write or read-
only. Further, without any extra external logic, a data bus width for each device
may be specified to be 8 or 16 bits. Besides that, there is an event register
which enables various interrupts to be received by the operating system based
on misuse of the memory mapping feature.

8] What is the benefit to the customer due to the fact that his operating system
may be notified based on memory window change? How this notification
occur? See ‘I/O and Memory Window Mapper Events -- Index 66H’ on page 93.

a] If an unauthorized program purposely or accidentally attempts to change the
size of a memory window it can represent a serious bug causing product
release and development delays (during development) or subsequent failures in
the field. Well behaved hardware will notify the the operating system via inter-
rupts if something happens which is not supposed happen. The ability of the
ZFx86 to notify the operating system via interrupts if someone tries to change
the memory window parameters, or if there is an inadvertent overlap of the
memory windows, enhances system integrity.
ZFx86 Training Page 119ZF-Logic Answers to Questions

9] What is special about mem_cs0? In order for that to work, what must happen?

a] When the CPU powers up, it does an instruction fetch from 000FFFF0H, which
in all Intel x86 computers is routed to the last 16 bytes of the boot ROM. In
ZFx86 designs, we connect mem_cs0 to the flash chip containing the boot
code. The ZFx86 chip, on power-up reset, initializes 3 32-bit registers for
mem_cs0 such that this instruction fetch will read from a flash device.

As a technical note: The window size is set to 64 K, and the base address to
F0000 (the last 64K of the 1MB of "real" memory), and the page to 0. This
means that instruction fetches in the top 64K of the 1MB real address space will
read from the first 64K of the flash chip.

1. First window settings

• 2CH-2BH: Mem_cs0 window size 0 - FFF000 = 16 MB / 0FFFFH
• 30H-2FH: Mem_cs0 page 0 - FFF000 = 16 MB / 0
• 28H-27H: Mem_cs0 base address 0 - FFF000 = 16 MB / F0000H
ZFx86 Training Page 120ZF-Logic Answers to Questions

ZFx86 Training Page 121

121

Z-tag and BUR

ZFx86 Training Book

Chapter 6 - Z-tag and BUR

6Z-tag and BUR

12/4/01

ZFx86 Training Page 122

122

Z-tag and BUR

Floppy Disk
Parallel Port
2 Serial Ports
AT Keyboard

PS/2 Mouse
Real-Time Clk
I2C Bus

Super I/O

ZF Fail-Safe

ZF-Logic

Boot ROM

12K Boot
Up ROM
(BUR)

Programmable Z-tag interface
Programmable PWM Generator
ISA Memory Mapper for Flash/SRAM
ISA I/O Mapper
Bootstrap Control Register
Dual Watchdog Timer

ZF-Logic Register Set

Z-tag
Controller

ISA Bus

Test Mode
Control And

Boundary Scan

User/BIOS Scratch Registers

Z-tag
Interface

JTAG

ZFx86 Block Diagram

ZFx86 Training Page 123

123

Z-tag and BUR

Improves speed over using serial interface.

Frees legacy ports from system FLASH update function

Creates a dedicated and simple interface for system upgrad-
ing.

Advantages
• Always Present • Initial BIOS Load
• Fast • Manufacturing Test
• Up to 1.5 Mbits/S • Diagnostics
• Simple to use • Remote Console
• Automatic • BIOS Updates
• Easy Configuration • Application Patches

Fail-Safe BUR

Z-tag Interface

Dongle

Overview

Using The Z-Tag Manager

ZFx86 Training Page 124

124

Z-tag and BUR

Small size
• 14 Pins: 7x2 Dual Row Header
• Use Surface Mount or Through-Hole technology

Placement

• Anywhere on your board that is convenient
• Ideally at board’s edge

If access is possible by means of a door or panel, use is simplified

NOTE: Shared pins with floppy interface to eliminate the use of additional pins on the ZFx86

Z-tag

FDD MUX

System FDD Lines

FDD Lines

The Z-tag Dongle

ZFx86 Training Page 125

125

Z-tag and BUR

Simple inexpensive device.

Facilitates field upgrades

Can store up to 512KB of data

Provides positive feedback to operator

“Memory” Dongle
2 SEEPROMS 256
KBytes

2 Jumpers

Normal / PassThrough
Write Protect

2 LEDs

Program

“PassThrough” Dongle
No onboard memory

No jumpers

Fast data transfer

3 LEDs

Power

Busy

Status

The Ztag Dongle (Continued)

ZFx86 Training Page 126

126

Z-tag and BUR

PassThrough MODE: Host Connected to Target system
directly (using the PassThrough dongle and a printer
cable)

Normal MODE: Load the Memory Dongle using the Host sys-
tem, and carry the Memory Dongle to the Target system

Normal vs. PassThrough Download Mode

ZFx86 Training Page 127

127

Z-tag and BUR

MS Windows Application

Used to load the Dongle with Data

Simple instructions / Powerful results

Only 7 standard commands

Create your own commands to add special purpose func-
tionality

The Z-tag Manager Interface

ZFx86 Training Page 128

128

Z-tag and BUR

• Dongle Related
• 01 - Upload and Execute

Code

• 05 - Stop

• FF - (Transport Container
"Basket" for Data)

• Console Related
• 00-Start/Resume

BUR Console

• 02 -SerialConsoleMode
(toggle)

• 03 - Execute Console Com-
mand Line

• 04 - Add Command to Con-
sole

Z-tag Manager Commands

ZFx86 Training Page 129

129

Z-tag and BUR

Z-tag “Memory” Dongle Programming

ZFx86 Training Page 130

130

Z-tag and BUR

Z-Tag “PassThrough” Dongle Programming

ZFx86 Training Page 131

131

Z-tag and BUR

Use the “Upload & Execute Code command:

Put the BIOS in Dongle - First Get Flash Program

ZFx86 Training Page 132

132

Z-tag and BUR

Editing Command 01 - Upload & Execute Code

ZFx86 Training Page 133

133

Z-tag and BUR

Changed the name

specified the file
which contains the
code to program
the Flash

of command 01

Now add basket containing the
rom image to be programmed

Edit Selection of Flash Code, Add BIOS Basket

ZFx86 Training Page 134

134

Z-tag and BUR

Add The Stop Command, Create A “Save” Folder

ZFx86 Training Page 135

135

Z-tag and BUR

Copy and Paste Commands to Work Area

ZFx86 Training Page 136

136

Z-tag and BUR

Copy Program Through the PassThrough Dongle

ZFx86 Training Page 137

137

Z-tag and BUR

The program is stored in an allocated buffer when you read
it, not over your saved commands.

Note that you cannot “Read Back” your Z-tag contents using
the PassThrough dongle.

Test by Reading Back from the “Memory” Dongle

ZFx86 Training Page 138

138

Z-tag and BUR

;; Copyright 2002 ZF Micro Devices, Inc. All rights reserved.
title ZFx86 BETA Code sample Obtains BUR Version Number

; build statements:
; ml /Fl burver1.asm
; exe2com burver1 0 (this routine available on ZF web site)

.486
burrom segment USE16 at 0f000h
; Services table. These are the function pointers for
; uploaded code use.

org 0ff00h ; f000:ff00 in BUR ROM
Bur_Version db ?

org 0ff0ah
CRLF label far ; call ff00:ff0a --> CR/LF to COM1

org 0ff22h
SerOut16 label far ; call ff00:ff22 --> AX to COM1 as decimal

org 0ff3ah
SerSend label far ; call ff00:ff3a --> Charout to COM1
burrom ends

CODE segment USE16 ’CODE’
assume cs:code

START:
push cs
pop es
mov di,offset VerText ; ES:DI - text to show
xor cx,cx ; display until 0 reached
call SerSend

les bx,psBur_Version ; es:bx --> Bur_Version String
mov ax,es:[bx]

call SerOut16 ; display AX to COM1 as decimal
call CRLF ; CR/LF to COM1

retf ; resume with BUR

psBur_Version dd Bur_Version ; define string pointer
VerText db ’BUR Version: ’,0

CODE ends
end START

BUR Version Test Program Source Code

ZFx86 Training Page 139

139

Z-tag and BUR

BUR is built-in software that serves as a prototype debug tool and Flash
update utility. BUR is an internal 12K binary ROM image.

Functionality can be divided into four categories:

• Basic component initialization
• Elementary debugger console functionality through COM1
• Data fetch and execution through Z-tag interface
• Basic OS functionality for user code

Uses of the BUR

• Manufacturing/field tool
• Debug tool
• Fail-safe System

BUR (Fail-safe) Boot Up ROM

ZFx86 Training Page 140

140

Z-tag and BUR

After initialization, following system components are active:
• North Bridge
• South Bridge
• ISA Bus
• Internal Static RAM
• IRQ controller
• Timer (8259)
• COM1
• Z-tag interface

Basic Component Initialization

ZFx86 Training Page 141

141

Z-tag and BUR

ZFix Console Commands

Command Action

i[n[b]]/inw/ind <port> read 8/16/32-bit value from port

o[ut[b]]/outw/outd <port> <value> write 8/16/32-bit value to port

zfr <register> read 8-bit value from ZFLogic register

zfw <register> <value> write 8-bit value to ZFLogic register

db/dw/dd <address> display memory in byte/word/dword mode

d
display next memory page in previous mode poke[b]/
pokew/poked <address> <value(s)> -

linear use linear mode addressing

real use real mode addressing

h[elp]/? show help

ver display verson information

speed <96/19/38/56/115> <hs> serial speed. Set hs to 1 for RTS/CTSa

a.The default speed on power up is 9600. The <hs> handshake bit is currently not working. You may try
higher speeds, but you may lose data.

yload <address> load data through YModem to address

ysend <address> <length> [filename] send data through YModem from address

g[o] <address> start executing from address

dls Display available download segment address

ZFiX - ZFx86 PCe Internal Console

(c)2001 ZF Micro Devices, Inc.

: DLS

0070

: yload 70:0

Please start YModem transmission now or press <ESC> ...

CCCCCCCCCCCC ← waiting for transfer

YModem data transfer succeeded.

: g 70:0

BUR Version: 0101

// Display available segment for
downloads

Elementary debugger console functionality

ZFx86 Training Page 142

142

Z-tag and BUR

There are 7 different type of commands which the BUR
understands and executes:

• 00 - Start/Resume BUR console.
• 01 - Upload and execute code.
• 02 - Serial console mode.
• 03 - Execute console command line.
• 04 - Add command to a console.
• 05 - Stop.
• FF - Basket

Data Fetch and Execute

ZFx86 Training Page 143

143

Z-tag and BUR

;; Copyright 2002 ZF Embedded, Inc. All rights reserved.
title ZFx86 BETA Code sample Obtains BUR Version Number

; build statements:
; ml /Fl burver1.asm
; exe2com burver1 0 (this routine available on ZF web site)

.486
burrom segment USE16 at 0f000h
; Services table. These are the function pointers for
; uploaded code use.

org 0ff00h ; f000:ff00 in BUR ROM
Bur_Version db ?

org 0ff0ah
CRLF label far ; call ff00:ff0a --> CR/LF to COM1

org 0ff22h
SerOut16 label far ; call ff00:ff22 --> AX to COM1 as decimal

org 0ff3ah
SerSend label far ; call ff00:ff3a --> Charout to COM1
burrom ends

CODE segment USE16 ’CODE’
assume cs:code

START:
push cs
pop es
mov di,offset VerText ; ES:DI - text to show
xor cx,cx ; display until 0 reached
call SerSend

les bx,psBur_Version ; es:bx --> Bur_Version String
mov ax,es:[bx]

call SerOut16 ; display AX to COM1 as decimal
call CRLF ; CR/LF to COM1

retf ; resume with BUR

psBur_Version dd Bur_Version ; define string pointer
VerText db ’BUR Version: ’,0

CODE ends
end START

Basic OS functionality for user code

ZFx86 Training Page 144

144

Z-tag and BUR

Manufacturing cycle can use the dongle at two stages:

• Load the Manufacturing Test program to allow diagnostic exer-
cising of the device.

• Update the device as it goes out the door

Very inexpensive device to provide to the field personnel
to troubleshoot on-site.

Manufacturing and Field Tools

ZFx86 Training Page 145

145

Z-tag and BUR

During initial bring-up the BUR allows designer to not
populate any other devices on the board with exception
of the power and clock circuits.

ZFx86 DRAM configurations were all debugged using the
BUR code only.

Small applications can be brought in to the device and
always executed from Z-tag interface

BUR: Debug tool

ZFx86 Training Page 146

146

Z-tag and BUR

Uses the Z-tag interface, dual WDT, and BUR Code to
provide automatic recovery of the system.

One recovery scenario:

Application overwrites a portion of the OS with Watch
Dog enabled.

Application hangs due to lack of OS.

WDT re-boots into BUR code (bit 23 tied high)

Bur code boots, finds Z-tag device on port and loads
through the port the information present in the serial
EPROM on board.

The code present in the serial EPROM includes the CRC for
the flash device. The BUR code then calculates the flash
CRC and compares it to the expected value.

If CRC is bad, additional programs can be downloaded
through the Z-tag interface to execute a modem call to
the factory requesting new code.

Once new code is downloaded, the flash is updated and
a system reset is executed (a South Bridge Reset or a
jump to ffff fff0) after setting the BUR base address to
zero in index register 57H/58H.

Fail-safe System

ZFx86 Training Book 0.80 Rev A Preliminary Specifications Page 147

ZF Micro Devices, Inc.

1052 Elwell Court

Palo Alto, California 94303

(650) 965-3800 · Fax 965-4050

www.zfmicro.com

http://zfmicro.com/
http://www.zflinux.com/

	Chapter 1 - Overview
	Finally a real X86 System on a Chip
	Introducing the ZFx86
	ZFx86 - The Integrating Platform
	ZFx86 Features

	The Chip and the Data Book
	The Block Diagram
	Block Diagram: ZFx86 Vs. RISC

	Pentium vs 486 Core CPU Technology
	The ZFx86 Integrated Development System
	ZFx86 “toy” Board Demonstration Design
	Tri-M Systems MZ104 PC/104 ZFx86 Board
	ZFx86 Documentation
	e-Commerce Server / Companion Chip

	Chapter 2 - x86 Processor
	ZFx86 Block Diagram
	Selling The ZFx86 x86 32-Bit CPU

	Chip Benefits Overview
	Power Management
	Memory Address Space – SDRAM
	Memory Address Space – ISA, PCI, ZF-logic

	Interrupts and the RTOS
	8259A PIC Interrupts
	NMI, SMI and SCI
	Interrupt Vector Assignment
	Privilege Levels – Data Access

	Integrated FPU
	Task State Transitions in VxWorks RTOS
	IOPL and SMM Protection
	MMU – Page Directory and Page Tables
	MMU – Translation Look-Aside Buffer

	Real Mode (DOS)
	Extended and Expanded Memory in Real Mode

	Basic Protected Mode Operation
	Privilege Levels – Code Access

	On Chip – L1 Cache

	Chapter 3 - North Bridge
	ZFx86 Block Diagram
	North Bridge Features
	North Bridge Features Q&A

	North Bridge Overview
	North Bridge SDRAM Controller
	North Bridge PCI
	North Bridge Cache Management

	Bus Arbirtration on the PCI Bus
	PCI vs. ISA bus mastering

	The Role of the NB in Power Management
	Answers to Questions

	Chapter 4 - South Bridge
	ZFx86 Block Diagram
	Definition of Functional Blocks

	Bus Comparison
	Front Side Vs Back Side PCI
	Bus Mastering IDE Controller
	USB.ORG Website
	Super I/O
	Serial Port
	Infrared Communication Port
	Parallel Port
	System Wake Up Control
	Access (I2C) Bus

	Real Time Clock
	Real Time Clock Alarms

	Chapter 5 - ZF-Logic
	ZFx86 Block Diagram
	ZF-Logic Block Diagram
	ZF-Logic Register Space Access (8-Bit)
	ZF-Logic Register Space Access (16, 32-Bit)
	ZF-Logic Registers

	ISA Memory Windows for Flash / SRAM
	Benefits of Memory Window Mapping
	Safety Aspects of Memory Windows
	Memory Window Registers
	ZF-Logic Memory Windows Review Questions

	GPCS I/O Mapper
	GPCS (I/O Mapper) Register Set
	GPCS (I/O Mapper) Control Registers

	Watchdog Timer
	ZF-Logic Registers for the Watchdog Timer
	External Control of Watchdog Timeout

	PWM Generator
	PWM Generator - I/O Control Register

	Boot Parameters Register
	Boot Parameters and Clocking
	Answers To Questions

	Chapter 6 - Z-tag and BUR
	ZFx86 Block Diagram
	Using The Z-Tag Manager
	The Z-tag Dongle
	The Ztag Dongle (Continued)
	Normal vs. PassThrough Download Mode

	The Z-tag Manager Interface
	Z-tag Manager Commands
	Z-tag “Memory” Dongle Programming
	Z-Tag “PassThrough” Dongle Programming
	Put the BIOS in Dongle - First Get Flash Program
	Editing Command 01 - Upload & Execute Code
	Edit Selection of Flash Code, Add BIOS Basket
	Add The Stop Command, Create A “Save” Folder
	Copy and Paste Commands to Work Area
	Copy Program Through the PassThrough Dongle
	Test by Reading Back from the “Memory” Dongle

	BUR Version Test Program Source Code
	BUR (Fail-safe) Boot Up ROM
	Basic Component Initialization
	Elementary debugger console functionality
	Data Fetch and Execute
	Basic OS functionality for user code

	Manufacturing and Field Tools
	BUR: Debug tool
	Fail-safe System

