1052 Elwell Court, Palo Alto, CA 94303

Booting Linux From Flash

Find the following items in the compressed “LinuxFileSet.zip” directory:
+ “Ready for Z-tag Manager” directory containing the following
* INITRD
+ KERNEL
* LinuxLoader

e LinuxFromFlash.bin

EF!H‘II'.IS

Tel: 800.683.5943

* 9150-0017-00_Booting Linux from Flash.pdf

* Readme.txt

* AM29xxx.rom

» zdisk-1.87.tar.gz when uncompressed contains the following items:
* busybox directory

doc directory
genext2fs directory
loadlin directory
mklibs directory
syslinux directory
README.txt

zdisk
rescue.tgz directory that when uncompressed contains the following directories:

bin
boot
dev
etc
lib
mnt
proc
root
sbin
tmp
usr

var

www.zfmicro.com

P/N 9150-0017-00 Rev B

© ZF Micro Devices, Inc

Creating the Components E

Using The ZF Linux Loader

This document provides a complete working example of a small Linux system booted entirely
from Flash on the ZFx86 Integrated Development System. The Development System has a
2MByte Flash chip that contains the System BIOS in the uppermost 256K RAM. Use the
remainder of the chip to store user programs, data, or an Operating System. In this example, we
use it to hold all of the elements comprising a small Linux system.

The example OS system used was originally designed to fit on a single 1.44 Mbyte floppy
diskette. This matches our available size well, and demonstrates how you can create and
package a compressed file system usable by the Linux Loader.

How It Works

As a normal boot process, the Phoenix BIOS scans the system for Option-ROMs. The ZFx86
implements the Linux Loader as one of these Option-ROMs, and gives it control just before the
BIOS normally turns control over to the first bootable device.

The Linux Loader performs three relatively simple tasks:

+ Copies a Linux kernel from Flash into RAM memory
* Copies a compressed file system from Flash into RAM memory

+ Transfers control to the kernel it previously copied into RAM

In order to accomplish these tasks, the various components must be located in specific places
within the Flash device. This will impose some restrictions on the size of both the kernel and the
compressed file system, but they should be adequate for most situations.

Several helpful documents about Booting From Flash are available with most Linux distributions
(for example, How-To and Info files). See the Bootdisk-HOWTO for information on creating an
Initial RAM Disk (initrd).

Creating the Components

You must create two major components when implementing a booted-by-Flash Linux system:

* The Kernel

* The Compressed File System

The Kernel

Many documents and books exist that describe the process of building or compiling your own
kernel. In general, very few differences exist between the “normal” cases described in those
texts, and what we need in our kernel that will boot from Flash.

P/N 9150-0017-00 Rev B 2

Creating the Components E

In our case, the kernel requires the ability to use RAM Disks, the ability to use an Initial RAM
Disk (initrd) built into the kernel, and the kernel size must not exceed 524288 (80000h) bytes.
Use the file generated by the “make zlmage” (or “make bzlmage”) without a modification. Use
the pre-built kernel supplied with this example, named “Kernel”, located in the “Ready for Z-tag
Manager” directory.

The Compressed File System

Our example uses a general purpose Rescue Disk as the usable content of the system. It
provides many familiar commands within the context of file manipulation, editing, system
administration, and so on. While each custom application contains different content, the
techniques used to put the File System into the Flash should be essentially the same for all
cases.

For the purpose of our example, you need not create the File System, but rather take advantage
of one already created and found in the compressed file. The Rescue Disk used here is part of
“zdisk-1.87" created by Kent Robotti.

1. Install the zdisk package onto an existing Linux system.

2. Create a directory (location of your choice) into which you extract the File System
components.

3. Extract the File System into the new directory (tar xzvpf rescue.tgz -C Rescue), assuming
the new directory “Rescue” is located at the same level as “rescue.tgz”.

If you create your own File System, model it after the contents of the Rescue directory. For
example, create directories for /dev, /proc, /bin, and so on. The remainder of this procedure
applies equally well to this example or a custom system of your own design.

Creating a Device For The File System

We need our File System to occupy an actual device (at least temporarily) so that we can
compress it for use as an initrd. You could use several techniques to do this, including a
spare Hard Disk partition, a Loop-Back device (treating a disk file as a device), and using a
RAM Disk. In our example, we use a RAM Disk.

P/N 9150-0017-00 Rev B 3

Creating the Components E

Since we intend to create a Compressed File System, the device should contain only zeros
before we populate it. This will allow the compression step to have the greatest effect.

1. To zero out a 4 Mbyte RAM Disk (more than enough space for our needs) type the
following:

dd i f=/dev/zero of=/dev/ranD bs=1k count =4096

2. To create the file system (format) on the device, type the following:
nke2fs -m 0 /dev/ramD 4096

The - m 0 switch prevents reserving space for the SuperUser.
3. To mount the RAM Disk and populate it, type the following two commands:

mount /dev/ranD /mmt
cp -a Rescue/* /mt

Be sure to use the -a switch when copying the files into the RAM Disk, as this
preserves the special “devices” and so on.

4. Once the RAM Disk is fully populated, you must unmount the device. Note that this is
your last chance to make any changes. Type the following:

umpunt / mmt

5. Then copy the device contents to a single file, and compress it. Type the following:

dd if=/dev/ranD bs=1k count=4096 | gzip -v9 > rootfs.gz

The zipped file rootfs.gz contains the contents of our complete File System in a
compressed form.

Creating the “initrd” Header

For the Linux Loader to copy the compressed File System into RAM, it must know the file
size. The 4 byte Header contains the size information and must be added to the file system.
Use whatever technique you are familiar with to create the header.

During development, when the File System contents change often, generating the Header
using the following procedure makes it a simple process. However, it might be worthwhile to
write a small program to generate this Header, and combine it with the compressed File
System. For our example, because we need only do it once, we complete all of the steps
manually.

1. First, we need to know the size (in bytes) of the rootfs.gz file. Obtain this information by
issuing a “long form” directory listing. Type the following:

I's -1

P/N 9150-0017-00 Rev B 4

Putting the Pieces Together E

The system displays the long form directory listing:

[~/ Zdi sk/ zdi sk-1.87]# |s -1

total 2112

STW MW -- 1 root r oot 5169 Nov 15 05: 21 READVE

dr wxr - Xr - x 14 root r oot 267 Mar 30 16:19 Rescue

dr wxr - Xr - x 2 root r oot 81 Cct 30 18:16 busybox

dr wxr wxr - x 2 root r oot 91 Nov 15 04: 36 doc

dr wxr - Xr - x 2 root r oot 89 Aug 30 2000 genext2fs

dr wxr - Xr - x 2 root r oot 115 Aug 16 2000 loadlin

dr wxr - Xr - x 2 root r oot 82 Cct 30 01:19 nklibs

SFW-r--f-- 1 root r oot 706944 Nov 15 07:42 rescue.tgz
C “TW-r--T-- 1 root r oot 709053 Apr 6 10:15 rootfs.gz

ar WXr - Xr - x 2 root r oot 224 Nov 12 23:21 syslinux

- FWXT - XF - X 1 root r oot 17852 Nov 15 07:38 zdi sk

2. Next, we need a four-byte file in which we place the size information. One way to do this is
to create the four-byte file. Type:

dd i f=/dev/zero of =header bs=1 count =4
3. Edit this file using a Hex Editor.

In an x86 processor, the least significant bytes appear at lower addresses, so you
need to rearrange the order of the bytes for the size of our file. Converting the size of
rootfs.gz in the listing above to hex, we get the following:

709053 (base 10) = adlbd (base 16)

4. In the Hex Editor, reorder the bytes, and add extra zeros to fill up four bytes:
0000: 0000 bd d1 Oa 00

5. Save the file with the file name “header”.

6. Now, combine the header file and the compressed File System (rootfs.gz) so that the
Linux Loader can use it:

cat header rootfs.gz > initrd

This combined file, named initrd, is installed into the Flash chip.

Putting the Pieces Together

You have completed the development steps that must be performed in the Linux environment.
Perform the remaining steps on a machine running Microsoft Windows™ OS, because the Z-tag
Manager software runs on that OS. Copy the two files “kernel” and “initrd” onto media that your
Windows machine can access.

P/N 9150-0017-00 Rev B 5

Putting the Pieces Together

Creating the Dongle Image

Using the Z-tag Manager software (and the Dongle), load the three files into the Integrated
Development System’s AMD Flash memory device. The following three file are required:
the “kernel”, the “initrd”, and the Linux Loader.

1. Each file requires three Z-tag instructions to complete the Flash upload-process.
Use these instructions:

* 01 — Upload and Execute Code
This instruction contains the code that writes data into the AMD Flash chip. Locate the
file AM29Fxxx.rom in the accompanying file set, and use it to load each of the three files.

* FE — Parameter Definition
This instruction sets the parameter starting address within the Flash device. The Z-tag
Manager loads the file at whatever offset specified using this instruction.

 FF — Basket
This contains the actual data loaded into the Flash device.

Figure 1 shows how the instruction list appears in the Z-tag Manager window.

arl A DL e images i

£-lag Cradaris - T1 dems Mas [nwweand [emplalog
Zd Homa Tar [CEC Daca Il Nass Tar CH Dacs
g dledl HAebbiml L i OIEl} LUEL ouUDtsn U PLaik ZPFLE Cumdnle Al Juis R e H
Dl pladaid B Esadlil & o ik il dos Soubs
Fi Favsl fCar a4 Uiy Ul dups Souloadl fislegr dssial Dewios Al JULsl 1ewWe
FF Faiwes 1 O0dl FaFY DOOLIZ0f |4d keec Conscls Cud Lims oldl Ackk S20 0D
Dl AHDL pr g ile L Diadl BASE DaDei=ik 04 Add Comsaced To Conecls OI00 AP435 DG0D3
Fl Zpitrd scarc § DEd0L0 Ol d9as D01l OF ooy Procsdoing Oiadl JoOD3 1395RL
T dnitred 0Dl EElF Boad1Ddl Fl Parssscer Definiciom ODdl QODd 30000
Dl AHT pore-gresssr DIadl EATE DDl FF Dazlac D1l JO0d IFADL
Fl LasSsr reare @ 180000 Oidl DFES I0d15]1 Fi FLE Compreaswsd Deakse D]l Q0D I04 G
FT Limme losdsz romszt O0dl TALL DOO1LLO
20 Scop Fraceming oAl done 20a1cdn S E-ing Gl (alason - 1 s
Td Nems Var ORD [eta
Sl Kdmours |ourc i, Lo a4dh oado Dasd Isee
04 Tan. omd =XOHINE OOdd 4F40 1ER@RL
IZ fandals co WUL OId0 OOl IFaRL
0d “ink wD® OO0 4200 19abL
3f fanials oo KDL OIdn LDIL 1995k
Dl "ink @I° D100 SeTF 18abL
20 fuart cansale DIO0 Q0D 295400
eadnsnn ! Db Chip [iragla 2f Joop sEecucirey OI00 J00e) Zd040 el
i [AL 3 =
F B || I‘gm-fm =i =1 =
= PasaThipagh - El_l};wlﬂ-
— o fimg b arsge
e | wee | = !umuu|
Harrderegh e Sewciad Cormearad £ dé e Ziag OF

Figure 1. Z-Tag Manager Instruction List

2. Option: In addition to the instructions needed to copy files into the Flash device, use
the 02 — Select Serial Device instruction to send status messages to the Serial Port.
However, you may remove this instruction if the diagnostic or status messages are not
required.

3. At the end of the instruction list, use the 05 — Stop Processing instruction to inform the
Z-tag Manager that all instructions are complete and to not wait for any more.

P/N 9150-0017-00 Rev B 6

Putting the Pieces Together E

Double click on any instruction listed in the T-tag Contents window to open an editing
dialog box where you can modify the label and any command parameters.

4. Double click the 01 — Upload and Execute code instruction in the Z-tag Contents window
to edit its parameters. See Figure 2. Use this command repeatedly for all three files.

£-lag Cradaris - T1 dems Mas [nwweand [emplalog
Ed Hame Tar CE Dmca Tl MW Tar CHD [Oacs
4 3 H PlLaih ZPiE Lumdnle Al Uuiel 1e¥ed
il dadmad & Eiaolak i o ikl il dos Soubs
E L islear dsrial Dewios Oidl OOl IEaik
FF Faiwes 1 O0dl FaFY DOOLIZ0f |4d keec Conscls Cud Lims oldl Ackk S20 0D
Dl AHADL prcogu ks ODedl BARG D000 |04 Add Comssard to Conecls 0100 4F43 DE0DD
Fl Zpitrd scarc § DEd0L0 Ol @i D001l |OF Scop Froced iy Oiadl JoOD3 1395RL
T dnitred 0Dl EElF Boad1Ddl Fl Parssscer Definiciom ODdl QODd 30000
Dl AHT pore-gresssr DIadl EATE DDl FF Dazlac D1l JO0d IFADL
Fl LasSsr reare @ 180000 Oidl DFES I0d15]1 Fi FLE Compreaswsd Deakse D]l Q0D I04 G
FT Limme losdsz romszt O0dl TALL DOO1LLO g
B0 Soop Procusming Gl qone sealeqn Saved £-lag Gl Delnson -] dsms
Id Nema Tar O Deza
Sl Kdeours jouc @idh, LEldn) GIO0 DEET IS0k
04 Tan. omd =XOHINE OOdd 4F40 1ER@RL
IZ fandals co WL OId0 OOl IFaRL
0d “ink wD® OO0 4200 19abL
3L fanaals oo KD DId0 LOIL 189Gk
Dl "ink @I° D100 SeTF 18abL
20 fusrt cansals DI00 Q00T 2500y
o ! Db Chip n-r 2f Joop sEecucirey OI00 J00e) Zd040 el
|
— ey Dorghe || F 7 H e - 1
b |t ! P tatagel = alfmen =]
= PasThiogh || © T :
it | whie |
e YT T T T B gl e, g

Figure 2. Z-tag Manager Main Menu

5. Type the description “AMD programmer” in the text box.

6. Use the Browse button to modify the Command’s Binary Body File: path so that it points to
the correct location on your system for the AM29Fxxx.rom file. The Z-tag Manager uses
the 01 routine to write the data into AMD Flash devices. See Figure 3.

7. Click Apply to save your changes.

P/N 9150-0017-00 Rev B 7

Putting the Pieces Together

R Wl armaig amimaned b b Fove

7 o000 B G T
MO pogrommes

Figure 3. 01 — Upload and Execute Code Form For Flash

The Kernel

Figures 4 and 5 show the other two instructions associated with the Kernel file.

1. From the Z-tag Manager’s Main menu, choose the FE — Parameter Definition instruction
and specify the location to place the kernel. See Figure 4.

by M AR aminan] E dibanig Hor

[FE " arions| 9001 [zomena (1757 1 gatiation

C:'WProgeam Files'y-tag HanagesWDongle' ztsghel BO]

Figure 4. FE — Parameter Definition Editor Form For The Kernel

P/N 9150-0017-00 Rev B 8

Putting the Pieces Together E

2. Type “Kernel start @ 000000” in the Description field.

3. Type “0x0” in the Define Parameter Value text field. The Linux Loader expects the kernel
to start at the beginning of the Flash device (offset 0).

4. Click Apply to save your changes.

5. From the Z-tag Manager’s Main menu, use the FF — Basket instruction to specify the
datafile’s location.

6. Use the Browse button to modify the Command’s Binary Body File: path so that it points to
the correct system location of the kernel.

« Lo Waragpe Lomsmand Edbag Fos

Coommand Haade

Conmanc: " Varsiors Y001 piatg/Ti[Z0010208 [1037 " S v o]

By et ot Dvsom T 15 et b0 covmmianad body-fle's daleams

Diescaphion: |*o1el

Ciommmand PapLosd Delrng Saction

Comand's By Bodpfle
|I:I':'1Lir||.|t"|FIe:|:|.|e DiskWFILASH ImageiE snel { Browiss |

Basket, a Data Contamer. Choose datafile wiing the bos abowe. ..

dpoly Corcel

Figure 5. FF — Basket Editing Form For The Kernel

initrd File
Figures 6 and 7 show the other two instructions associated with the “initrd” file.

1. From the Z-tag Manager’s Main menu, choose the FE — Parameter Definition instruction
to specify the location to place the initrd file. See Figure 6.

P/N 9150-0017-00 Rev B 9

Putting the Pieces Together E

< Lo Wanaipe Losmand Eikbiandg o

Coomimand Haade

Conmanet [0 Verior 9901 Dot [PO01G1E [1035 sttt

By izl DiateTime is ned o command bodg-ie's dalefims

Diseciptiore [mitrd start & (RO

Camimand PaplLosd Defring Seacion
Corrmand's Binany Body File

|' Wrogeam Files'\Z-tag ManagesWDongle'zlaghel BODG I

Define Parameder ¥Vabue, erder o1 textbox below

(000

|

Figure 6. FE — Parameter Definition Editor Form For initrd

2. Type “initrd start @ 080000” in the Description field.

3. Type “0x80000” in the Define Parameter Value text field. The Linux Loader expects the
initrd to start at offset 0x80000 within the Flash device.

4. Click Apply to save your changes.

5. From the Z-tag Manager’s Main menu, use the FF — Basket instruction to specify the
datafile’s location. See Figure 7.

6. Type “initrd” in the Description field.

7. Use the Browse button to modify the Command’s Binary Body File: path so that it points to
the correct system location of the initrd.

P/N 9150-0017-00 Rev B 10

Putting the Pieces Together

< Loy W armaig wminarad F b Fore

Figure 7. FF — Basket Editing Form For initrd

Linux Loader

Figures 8 and 9 detail the other two instructions associated with the Linux Loader file.

1. From the Z-tag Manager’s Main menu, choose the FE — Parameter Definition instruction
to specify the location to place the initrd file. See Figure 8.

Pl BTN RTET T smimared E isbinig Fore

Figure 8. FE — Parameter Definition Editor Form For Linux Loader

P/N 9150-0017-00 Rev B 1

Putting the Pieces Together E

2. Type “Loader start @ 1B0000” in the Description field.

3. Type “0x1B0000” in the Define Parameter Value text field. Locate the Linux Loader at
offset 0x1B0000 within the Flash device.

4. Click Apply to save your changes.

5. From the Z-tag Manager’s Main menu, use the FF — Basket instruction to specify the
Linux Loader’s location. See Figure 9.

6. Type “Linux loader romext” in the Description field.

7. Use the Browse button to modify the Command’s Binary Body File: path so that it points to
the correct system location of the Linux Loader.

« Lo Waragpe Lomsmand Edbag Fos

Coommand Haade

Conmand: |1 Varsiors Y001 piatg/Ti 20010103 [958 s o]

By cdetzwakt Diatey' Time is met o command bodyfile's daleime

Diseciphiere [Liniss boader ipmt

Coommand PapLosd Defiring Seciion
Cornmand's Binany Biody File

|I:I':"|Lir||.|t"|FIucue DaskSFLASH Imageilnusl osder

Basket, a Data Contamer. Choose datafile wiing the bos abowe. ..

Figure 9. FF — Basket Editing Form For The Linux Loader

P/N 9150-0017-00 Rev B 12

Setting the Memory Chip Select Window E

Writing The Data To Flash
Now that all the Z-tag Manager instructions are loaded and the various parameters are set

correctly, use the following procedure to write the data into the Flash device.
1. In the Z-tag Manager’s Main menu, set the “Destination” control to “Pass Through”.

The list of instructions previously created contains too much data to fit into the Dongle;
therefore, you must connect the system running the Z-tag Manager to the IDS using
the Dongle and a parallel extension cable. This cable should be wired “straight
through” (do not use a standard printer cable).

2. Configure the Dongle for Pass Through mode by moving the JP2 jumper on the Dongle to
pins 2-3.

3. With the two machines connected by the parallel cable and Dongle, click the “Write”
button on the Z-tag Manager’s Main menu.

4. Turn the IDS board’s power ON (or press RESET, if power is already applied).
A progress bar appears on the Z-tag Machine showing the transfer process.

5. Watch the LEDs on the Dongle that indicate that the transfer is complete. While the
transfer processes, the “Status” LED blinks Yellow. If the transfer completes successfully,
the “Status” LED turns Green.

6. Remove the Dongle from the IDS, and press the RESET button.

Setting the Memory Chip Select Window
To set the Memory Chip Select setting, follow the procedure below:
1. When the IDS boots the first time after loading the Flash contents, press the “F2” key to
enter the PhoenixBIOS Setup program.
Select to the “Advanced” submenu.
Select the “Advanced Chipset Control” menu item.

Select the “ISA Memory Chip Select Setup” menu item.

o &~ N

Set the entries for “Memory Window - mem_cs0” as follows:
* Window Size = 1h

» Window Base = D8h

* Window Page = D8h

Note:The data width must be set to 8 bits for AMD Flash.

6. Exit and save the changes to the BIOS.

P/N 9150-0017-00 Rev B 13

Using the new Linux Loader E

Using the new Linux Loader

When the system boots up now, the Linux Loader will be the active OS.

» To allow the Linux OS located in the Flash device to launch, simply do nothing when the
Linux Loader message displays.

* If you wish to allow the normal system boot sequence to occur, press the “Esc” key when
the Linux Loader message displayes, and the normal boot sequence launches.

P/N 9150-0017-00 Rev B 14

	Booting Linux From Flash
	Using The ZF Linux Loader
	How It Works

	Creating the Components
	The Kernel
	The Compressed File System

	Putting the Pieces Together
	Creating the Dongle Image
	Writing The Data To Flash

	Setting the Memory Chip Select Window
	Using the new Linux Loader

